Stochastic Local Volatility in QuantLib

J. Göttker-Schnetmann, K. Spanderen

QuantLib User Meeting 2014
Düsseldorf
2014-12-06
Heston Stochastic Local Volatility

Fokker-Planck Equations
- Square Root Process
- Boundary Conditions
- Coordinate and Density Transformations

Calibration
Local Volatility [Dupire 1994]

- Local Volatility $\sigma_{LV}(S, t)$ as function of spot level S_t and time t:

$$d \ln S_t = \left(r_t - q_t - \frac{1}{2} \sigma_{LV}^2(S, t) \right) dt + \sigma_{LV}(S, t) dW_t$$

$$\sigma_{LV}^2(S, t) = \left. \frac{\partial C}{\partial T} + (r_t - q_t) K \frac{\partial C}{\partial K} + q_tC \right|_{K=S, T=t}$$

- Consistent with option market prices.
- Model is often criticized for its unrealistic volatility dynamics.
- Dupire formula is mathematically appealing but also unstable.
Stochastic Volatility [Heston 1993]

- Stochastic volatility given by a square-root process:

\[
\begin{align*}
 d \ln S_t &= \left(r_t - q_t - \frac{1}{2} \nu_t \right) dt + \sqrt{\nu_t} dW_t^S \\
 d\nu_t &= \kappa (\theta - \nu_t) dt + \sigma \sqrt{\nu_t} dW_t^\nu \\
 \rho dt &= dW_t^\nu dW_t^S
\end{align*}
\]

- Semi-analytical solution for European call option prices:

\[
C(S_0, K, \nu_0, T) = SP_1 - Ke^{-(r_t-q_t)T} P_2
\]

\[
P_j = \frac{1}{2} + \frac{1}{\pi} \int_0^{\infty} \Re \left[e^{-iu \ln K} \phi_j(S_0, K, \nu_0, T, u) \right] du
\]

- More realistic volatility dynamics.
- Does often not exhibit enough skew for short dated expiries.
Example: Differences in δ and γ

The implied and local volatility surface is derived from the Heston model and therefore the option prices between all models match. $S_0 = 5000$, $\kappa = 5.66$, $\theta = 0.075$, $\sigma = 1.16$, $\rho = -0.51$, $\nu_0 = 0.19$, $T = 1.7$
Add leverage function $L(S_t, t)$ and mixing factor η:

$$d \ln S_t = \left(r_t - q_t - \frac{1}{2} L(S_t, t)^2 \nu_t \right) dt + L(S_t, t) \sqrt{\nu_t} dW_t^S$$

$$d \nu_t = \kappa (\theta - \nu_t) dt + \eta \sigma \sqrt{\nu_t} dW_t^\nu$$

$$\rho dt = dW_t^\nu dW_t^S$$

Leverage $L(x_t, t)$ is given by probability density $p(S_t, \nu, t)$ and

$$L(S_t, t) = \frac{\sigma_{LV}(S_t, t)}{\sqrt{\mathbb{E}[\nu_t | S = S_t]}} = \sigma_{LV}(S_t, t) \sqrt{\frac{\int_{\mathbb{R}^+} p(S_t, \nu, t) d\nu}{\int_{\mathbb{R}^+} \nu p(S_t, \nu, t) d\nu}}$$

Mixing factor η tunes between stochastic and local volatility.
Cheat Sheet: Link between SDE and PDE

Starting point is a multidimensional SDE of the form:

\[dx_t = \mu(x_t, t)\, dt + \sigma(x_t, t)\, dW_t \]

Feynman-Kac: price of a derivative \(u(x_t, t) \) with boundary condition \(u(x_T, T) \) at maturity \(T \) is given by:

\[
\frac{\partial}{\partial t} u + \sum_{k=1}^{n} \mu_i \frac{\partial}{\partial x_k} u + \frac{1}{2} \sum_{k,l=1}^{n} \left(\sigma \sigma^T \right)_{kl} \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_l} u - ru = 0
\]

Fokker-Planck: time evolution of the probability density function \(p(x_t, t) \) with the initial condition \(p(x, t = 0) = \delta(x - x_0) \) is given by:

\[
\frac{\partial}{\partial t} p = - \sum_{k=1}^{n} \frac{\partial}{\partial x_k} [\mu_i p] + \frac{1}{2} \sum_{k,l=1}^{n} \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_l} \left[\left(\sigma \sigma^T \right)_{kl} p \right]
\]
The SLV model leads to following Feynman-Kac equation for a function $u : \mathbb{R} \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$, $(x, \nu, t) \mapsto u(x, \nu, t)$:

$$
0 = \partial_t u + \frac{1}{2} L^2 \nu \partial_x^2 u + \frac{1}{2} \eta^2 \sigma^2 \nu \partial_\nu^2 u + \eta \sigma \rho L \partial_x \partial_\nu u + \left(r - q - \frac{1}{2} L^2 \nu \right) \partial_x u + \kappa (\theta - \nu) \partial_\nu u - ru
$$

- PDE can be solved using either Implicit scheme (slow) or more advanced operator splitting schemes like modified Craig-Sneyd or Hundsdorfer-Verwer in conjunction with damping steps (fast).
- Implementation is mostly harmless, extend FdmHestonOp.
The corresponding Fokker-Planck equation for the probability density $p : \mathbb{R} \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}, (x, \nu, t) \mapsto p(x, \nu, t)$ is:

$$
\partial_t p = \frac{1}{2} \partial_x^2 \left[L^2 \nu p \right] + \frac{1}{2} \eta^2 \sigma^2 \partial^2_\nu \left[\nu p \right] + \eta \sigma \rho \partial_x \partial_\nu \left[L \nu p \right] \\
- \partial_x \left[\left(r - q - \frac{1}{2} L^2 \nu \right) p \right] - \partial_\nu \left[\kappa (\theta - \nu) p \right]
$$

- Numerical solution of the PDE is cumbersome due to difficult boundary conditions and the Dirac delta distribution as the initial condition.
- PDE can be efficiently solved using operator splitting schemes, preferable the modified Craig-Sneyd scheme.
Square Root Process

Main issues of the implementation are caused by the square root process:

\[d\nu_t = \kappa(\theta - \nu_t)dt + \sigma\sqrt{\nu_t}dW \]

It has the following Fokker-Planck equation for the probability density \(p : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, (\nu, t) \mapsto p(\nu, t) \):

\[\partial_t p = \frac{\sigma^2}{2} \partial_{\nu}^2 [\nu p] - \partial_{\nu} [\kappa(\theta - \nu)p] \]

The stationary probability density \(\hat{p}(\nu) \) with \(\partial_t \hat{p}(\nu) = 0 \) is:

\[\hat{p}(\nu) = \beta^\alpha \nu^{\alpha - 1} \exp(-\beta \nu) \Gamma(\alpha)^{-1}, \quad \alpha = \frac{2\kappa\theta}{\sigma^2}, \quad \beta = \frac{\alpha}{\theta} \]
Stationary Probability Density

\[
\lim_{\nu \to 0} \hat{p}(\nu) = \begin{cases}
\infty & \text{if } \alpha < 1 \\
\theta^{-1} & \text{if } \alpha = 1 \\
0 & \text{if } \alpha > 1
\end{cases}
\]

The square root process \(\nu_t \) is strictly positive if the Feller Condition \(\alpha > 1 \) is met.
The probability weight within $[\nu_{\text{min}}, \nu_{\text{max}}]$ of $p(\nu, t)$ is evolving by:

$$
\partial_t \int_{\nu_{\text{min}}}^{\nu_{\text{max}}} d\nu p = \int_{\nu_{\text{min}}}^{\nu_{\text{max}}} d\nu \left(\frac{\sigma^2}{2} \partial_\nu^2 [\nu p] - \partial_\nu [\kappa(\theta - \nu)p] \right)
$$

In order to avoid leaking of probability we enforce:

$$
\partial_t \int_{\nu_{\text{min}}}^{\nu_{\text{max}}} d\nu p = 0 \Rightarrow \left[\frac{\sigma^2}{2} \partial_\nu [\nu p] - [\kappa(\theta - \nu)p] \right]_{\nu=\nu_{\text{min}}}^{\nu_{\text{max}}} = 0
$$

$$
\Rightarrow \left[\frac{\sigma^2}{2} \partial_\nu [\nu p] - [\kappa(\theta - \nu)p] \right]_{\nu=\nu_{\text{min}}, \nu_{\text{max}}} = 0
$$

Zero Flux Boundary Condition
On a non-uniform grid \(\{ z_1, \ldots, z_n \} \) the two-sided approximation of \(\partial_z f \) is:

\[
\partial_z f(z_i) \approx \frac{h_{i-i}^2 f_{i+1} + (h_i^2 - h_{i-1}^2) f_i - h_i^2 f_{i-1}}{h_{i-1} h_i (h_{i-1} + h_i)}
\]

\[
= \frac{h_{i-1}}{h_{i-1} + h_i} \frac{f_{i+1} - f_i}{h_i} + \frac{h_i}{h_{i-1} + h_i} \frac{f_i - f_{i-1}}{h_{i-1}}
\]

With \(h_i := z_{i+1} - z_i \) and \(f_i := f(z_i) \). The second order derivative is approximated by:

\[
\partial_z^2 f(z_i) \approx \frac{h_{i-i} f_{i+1} - (h_{i-1} + h_i) f_i + h_i f_{i-1}}{\frac{1}{2} h_{i-1} h_i (h_{i-1} + h_i)}
\]
Sort by factors of f_i, set

\[
\begin{align*}
\zeta_i & := h_i h_{i-1} \\
\zeta_p & := h_i (h_{i-1} + h_i) \\
\zeta_m & := h_{i-1} (h_{i-1} + h_i)
\end{align*}
\]

then:

\[
\begin{align*}
\partial_z f(z_i) & \approx \frac{h_{i-1} f_{i+1}}{\zeta_i} + \frac{(h_i - h_{i-1}) f_i}{\zeta_i} - \frac{h_i f_{i-1}}{\zeta_m} \\
\partial_z^2 f(z_i) & \approx \frac{2}{\zeta_i} f_{i+1} - \frac{2}{\zeta_i} f_i + \frac{2}{\zeta_m} f_{i-1}
\end{align*}
\]
A general partial differential equation of the form

\[\partial_t f = A(z) \partial^2_z f + B(z) \partial_z f + C(z) f \]

has therefore the spacial discretization:

\[\partial_t f(z_i) = \frac{2A_i + B_i h_{i-1}}{\zeta_i^p} f_{i+1} + \left(\frac{-2A_i + B_i (h_i - h_{i-1})}{\zeta_i} + C_i \right) f_i \]

\[+ \frac{2A_i - B_i h_i}{\zeta_i^m} f_{i-1} \]

\[=: \gamma_i f_{i+1} + \beta_i f_i + \alpha_i f_{i-1} \]
This is interpreted as a tridiagonal transfer matrix T with diagonal β_i, upper diagonal γ_i, and lower diagonal α_i:

$$
T :=
\begin{pmatrix}
\beta_1 & \gamma_1 & 0 & \ldots \\
\alpha_2 & \beta_2 & \gamma_2 & 0 & \ldots \\
0 & \alpha_3 & \beta_3 & \gamma_3 & 0 & \ldots \\
& & & & & \ddots \ddots \ddots \ddots \\
& & & & \alpha_{n-1} & \beta_{n-1} & \gamma_{n-1} \\
& & \vdots & \alpha_n & \beta_n
\end{pmatrix}
$$

Then

$$
\partial_t \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} = T \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}
$$
Add z_0 below the lower boundary and z_{n+1} above the upper boundary to the grid. The zero flux condition takes the general form

$$\left[\partial_z A(z, t)f + B(z, t)f \right]_{z = z_0, z_{n+1}} \equiv 0$$

Lower Boundary: The partial derivative is discretized by a second order forward differentiation, so that all terms are given by grid points

$$\partial_z f(z_0) \approx - \frac{h_0^2 f_2 + (h_1 + h_0)^2 f_1 - ((h_1 + h_0)^2 - h_0^2) f_0}{h_0 h_1 (h_1 + h_0)}$$

$$= - \frac{h_0}{\zeta_p} f_2 + \left(\frac{h_0 + h_1}{\zeta_1} \right) f_1 - \left(\frac{2h_0 + h_1}{\zeta_1^m} \right) f_0$$
Boundary Condition

The general zero-flux boundary condition is therefore discretized at the lower boundary as

\[0 = -\frac{h_0}{\zeta_1} A_0 f_2 + \frac{(h_0 + h_1)}{\zeta_1} A_0 f_1 + \left(-\frac{(2h_0 + h_1)}{\zeta_1} A_0 + B_0 \right) f_0 \]

\[= c_1 f_2 + b_1 f_1 + a_1 f_0 \]

\(\Rightarrow f_0 = -\frac{c_1}{a_1} f_2 - \frac{b_1}{a_1} f_1 \)

\[\partial_t f_1 = \gamma_1 f_2 + \beta_1 f_1 + \alpha_1 f_0 \]

\[= (\gamma_1 - \alpha_1 \frac{c_1}{a_1}) f_2 + (\beta_1 - \alpha_1 \frac{b_1}{a_1}) f_1 \]

\(\rightarrow \) modification of the transfer matrix.
Non-Uniform Meshes

Non-uniform meshes are a key component [Tavella & Randall 2000]

Define coordinate transformation

\[Y = Y(\epsilon) \]

for \(n \) critical points \(B_k \) with density factors \(\beta_k \)

\[
\frac{dY(\epsilon)}{d\epsilon} = A \left[\sum_{k=1}^{n} J_k(\epsilon)^{-2} \right]^{-\frac{1}{2}}
\]

\[
J_k(\epsilon) = \sqrt{\beta^2 + (Y(\epsilon) - B_k)^2}
\]

\[
Y(0) = Y_{min}
\]

\[
Y(1) = Y_{max}
\]

ODE solver is based on Peter’s Runge-Kutta implementation.

Example: \(x_0 = \ln(100), \nu_0 = 0.05 \), Feller constraint is fulfilled
Loss of Probability

Time evolution of the stationary distribution with zero flux condition.

\[P(x) = \int_{-\infty}^{x} \hat{p}(\nu) d\nu \]
\[\nu_{\text{min}} = P^{-1}(0.01) \]
\[\nu_{\text{max}} = P^{-1}(0.99) \]
\[\int_{\nu_{\text{min}}}^{\nu_{\text{max}}} \hat{p} d\nu = 0.98 \]

Integral error after evolving for one year:
\[\left| \int_{\nu_{\text{min}}}^{\nu_{\text{max}}} p(\nu, t = 1y) d\nu - 0.98 \right| \]
Recap: Stationary distribution:

$$\hat{p}(\nu) = \beta^\alpha \nu^{\alpha-1} \exp(-\beta \nu) \Gamma(\alpha)^{-1}$$

Remove divergence following Lucic [2] by using

$$q = \nu^{1-\alpha} p$$

$$\Rightarrow \partial_t q = \frac{\sigma^2}{2} \nu \partial^2_{\nu} q + \kappa (\nu + \theta) \partial_{\nu} q + \frac{2\kappa^2 \theta}{\sigma^2} q$$

This equation has the stationary solution

$$\hat{q}(\nu) = \beta^\alpha \exp(-\beta \nu) \Gamma(\alpha)^{-1}$$

which converges to $\beta^\alpha \Gamma(\alpha)^{-1}$ as $\nu \to 0$
Time evolution of the transformed distribution with zero flux condition.
Apply Itô’s lemma to $z = \log \nu$:

$$dz = \left((\kappa \theta - \frac{\sigma^2}{2}) \frac{1}{\nu} - \kappa \right) dt + \sigma \frac{1}{\sqrt{\nu}} dW$$

Fokker-Planck equation for the probability distribution $f : \mathbb{R} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, $(z, t) \mapsto f(z, t) \ (\nu = \exp(z))$:

$$\partial_t f(z, t) = -\partial_z \left((\kappa \theta - \frac{\sigma^2}{2}) \frac{1}{\nu} - \kappa \right) f + \partial_z^2 \left(\frac{\sigma^2}{2} \frac{1}{\nu} f \right)$$

Stationary solution:

$$\hat{f}(z) = \beta^\alpha \exp(z \alpha) \exp(-\beta \exp(z)) \Gamma(\alpha)^{-1} = \nu \hat{p}(\nu)$$

\hat{f} converges to 0 as $z \rightarrow -\infty$
Log Coordinates

Time evolution of log probability density with zero flux condition

\[\log \text{FPE, grid size: } 100 \]
\[\log \text{FPE, grid size: } 1000 \]

\[\nu_{\min} = \min\left(0.001, F^{-1}(0.01)\right) \]
Proper implementation of the zero flux boundary condition is not enough to get a stable scheme.

Transformation of the PDE in log coordinates leads to a less poisonous problem.

Non-Uniform meshers are a key component for success.

→ all in all, mostly harmless 😊. Time for another dimension
Adding the stock process to the picture complicates matters a bit. Probability density has a second variable $x = \log S$, and the Fokker-Planck equation reads

$$
\partial_t f = \partial_z^2 A(z, x, t)f + \partial_z B(z, x, t)f + \partial_z \partial_x \rho C(z, x, t)f + \text{powers of } \partial_x
$$

Stretching the argument above a bit\(^1\) we arrive at the boundary condition

$$
|\partial_z A(z, x, t)f + B(z, x, t)f + \rho \partial_x C(z, x, t)f| \bigg|_{z=z_0,z_1} \equiv 0
$$

\(^1\)Can be made rigorous [2]
SLV Fokker-Planck: Natural Coordinates

\[
\begin{align*}
 dx_t &= (r_t - q_t - \frac{\nu_t}{2})dt + \sqrt{\nu_t}L(x, t)dW_t^x \\
 d\nu_t &= \kappa(\theta - \nu_t)dt + \eta\sigma \sqrt{\nu_t}dW_t^\nu \\
 \rho dt &= dW_t^x dW_t^\nu
\end{align*}
\]

Fokker-Planck equation:

\[
\begin{align*}
 \partial_t p &= \frac{1}{2} \partial_x^2 \left[L^2 \nu p \right] + \frac{1}{2} \eta^2 \sigma^2 \partial_\nu^2 \left[\nu p \right] + \eta \sigma \rho \partial_x \partial_\nu \left[L\nu p \right] \\
 &\quad - \partial_x \left[\left(r - q - \frac{1}{2} L^2 \nu \right) p \right] - \partial_\nu \left[\kappa (\theta - \nu) p \right]
\end{align*}
\]

The zero flux condition takes the form for all \(x \):

\[
\left. \left[\frac{\sigma^2}{2} \nu \partial_\nu p + \left(\kappa (\nu - \theta) + \frac{\sigma^2}{2} \right) p + \rho \nu \sigma \partial_x Lp \right] \right|_{\nu=\nu_0, \nu=\nu_{n+1}} = 0
\]
Fokker-Planck equation for \(q = \nu^{1-\alpha} p \)

\[
\partial_t q = \frac{\nu}{2} \partial_x^2 L^2 q + (-r_t + q_t) \partial_x q + \partial_x \left(\frac{\nu}{2} L^2 + \rho \sigma \frac{2\kappa \theta}{\sigma^2} L \right) q \\
+ \frac{\sigma^2}{2} \nu \partial_{\nu}^2 q + \kappa (\nu + \theta) \partial_{\nu} q + \frac{2\kappa^2 \theta}{\sigma^2} q \\
+ \rho \sigma \nu \partial_x \partial_{\nu} L q
\]

The zero flux condition takes the form \(\forall x : \)

\[
\left[\frac{\sigma^2}{2} \nu \partial_{\nu} q + \kappa \nu q + \rho \nu \sigma \partial_x L q \right] \bigg|_{\nu=\nu_0, \nu=\nu_{n+1}} = 0
\]
SLV Fokker-Planck: Log Coordinates

\[
\begin{align*}
\, dx_t & = \left(r_t - q_t - \frac{\nu_t}{2} \right) dt + \sqrt{\nu_t} L(x, t) dW^x_t \\
\, dz_t & = \left((\kappa \theta - \frac{\sigma^2}{2}) \frac{1}{\nu} - \kappa \right) dt + \eta \sigma \frac{1}{\sqrt{\nu}} dW^\nu_t \\
\, \rho dt & = dW^x_t dW^\nu_t
\end{align*}
\]

Fokker-Planck equation:

\[
\partial_t f = \frac{1}{2} \partial^2_x \left[L^2 \nu f \right] + \frac{\eta^2 \sigma^2}{2} \partial^2_z \left[\frac{1}{\nu} f \right] + \eta \sigma \rho \partial_x \partial_z \left[L f \right] - \partial_x \left[\left(r - q - \frac{1}{2} L^2 \nu \right) f \right] - \partial_z \left[\left((\kappa \theta - \frac{\sigma^2}{2}) \frac{1}{\nu} - \kappa \right) f \right]
\]

The zero-flux boundary condition is

\[
\left. \left[\frac{\eta^2 \sigma^2}{2} \frac{1}{\nu} \partial_z f - \kappa \left(1 - \frac{\theta}{\nu} \right) f + \rho \sigma \partial_x L f \right] \right|_{\nu = \nu_0, \nu = \nu_{n+1}} = 0
\]
Example log coordinates:

\[\partial_t f = \frac{1}{2} \partial_x^2 \left[L^2 \nu f \right] + \frac{\eta^2 \sigma^2}{2} \partial_z^2 \left[\frac{1}{\nu} f \right] + \eta \sigma \rho \partial_x \partial_z \left[Lf \right] \]

\[- \partial_x \left[\left(r - q - \frac{1}{2} L^2 \nu \right) f \right] - \partial_z \left[\left((\kappa \theta - \frac{\sigma^2}{2}) \frac{1}{\nu} - \kappa \right) f \right] \]

\[\partial_t f = \frac{\nu}{2} \partial_x^2 L^2 f + \frac{\eta^2 \sigma^2}{2} \frac{1}{\nu} \partial_z^2 f + \eta \sigma \rho \partial_x \partial_z Lf \]

\[+ \left(-r + q \right) \partial_x f + \frac{\nu}{2} \partial_x L^2 f + \left[\left(-\kappa \theta - \frac{\sigma^2}{2} \right) \frac{1}{\nu} + \kappa \right] \partial_z f + \frac{\kappa \theta}{\nu} f \]

Use multiplication of derivative operators with \(L \) on the right hand side, added method multR to \texttt{TripleBandBinearOp} (saves some terms).
Start Condition: Dirac Delta Distribution

To begin with the Dirac delta distribution need to be regularized. Approximation for small Δt based on

$$L(x, t) = \frac{\sigma_{LV}(x_{t=0}, 0)}{\sqrt{\nu_0}} = \text{const} \forall t \in [0, \Delta t]$$

1. Exact solution is known for $\rho = 0$
2. One Euler Step based on the SDE leads to bivariate Gaussian distribution
3. Semi-Analytical solution for exact sampling [Brodie, Kaya 2006]
Start with a calibrated Local Volatility Model $\sigma_{LV}(x_t, t)$ and calibrated Heston Model $(\nu_0, \theta, \kappa, \sigma, \rho)$

Recap: Leverage $L(x_t, t)$ is given by

$$L(x_t, t) = \frac{\sigma_{LV}(x_t, t)}{\sqrt{\mathbb{E}[\nu_t \mid x = x_t]}} = \sigma_{LV}(x_t, t) \sqrt{\frac{\int_{\mathbb{R}^+} p(x_t, \nu, t) d\nu}{\int_{\mathbb{R}^+} \nu p(x_t, \nu, t) d\nu}}$$

Start condition: $p(x, \nu, 0) = \delta(x - x_0) \delta(\nu - nu_0)$

$$\Rightarrow L(x_{t=0}, 0) = \frac{\sigma_{LV}(x_{t=0}, 0)}{\sqrt{\nu_0}}$$
Iterative Scheme:

1. Use Fokker-Planck equation to get from

\[p(x, \nu, t) \to p(x, \nu, t + \Delta t) \]

assuming a piecewise constant leverage function \(L(x_t, t) \) in \(t \)

2. Calculate leverage function at \(t + \Delta t \):

\[L(x, t + \Delta t) = \sigma_{LV}(x, t + \Delta t) \sqrt{\frac{\int_{\mathbb{R}^+} p(x, \nu, t + \Delta t) d\nu}{\int_{\mathbb{R}^+} \nu p(x, \nu, t + \Delta t) d\nu}} \]

3. Set \(t := t + \Delta t \)

4. If \(t \) is smaller than the final maturity goto 1
Motivation: Set-up extreme test case for the LSV calibration

- Feller condition is strongly violated with $\alpha = 0.6$
- Implied volatility surface of the Heston and the local volatility model differ significantly.
- Local Volatility: $\sigma_{LV}(x, t) \equiv 30\%$
- Heston Parameters:
 $S_0 = 100, \sqrt{\nu_0} = 24.5\%, \kappa = 1, \theta = \nu_0, \sigma^2 = 0.2, \rho = -75\%$
- Use log coordinates and modified Craig-Sneyd scheme
Calibration Example: Heston Implied Volatility Surface
Calibration Example: Round Trip

Quality of calibration is tested by the round trip error

- Fokker-Planck step: Calibrate the leverage function $L(x, t)$
- Feyman-Kac step: Calculate European option prices under resulting LSV model and back out implied volatility surface
- Show differences w.r.t. expected value of

$$\sigma_{impl}(K, t) = \sigma_{LV}(S, t) = 30\%$$
Calibration Example: LSV Implied Volatility Surface
Calibration Example: Leverage Function $L(S_t, t)$

![Graph depicting $L(S_t, t)$ over time and underlying values]
Conclusion: Heston Local Volatility in QuantLib

- Backward Feynman-Kac solver
- Forward Fokker-Planck solver
 - Zero-Flux boundary condition
 - Natural and log coordinates, transformed probability density
- Non-uniform meshers are a key factor for success
- Heston Local Volatility calibration
- Round trip errors are around 5bp in vols for extreme case

Repository:
https://github.com/jschnetm/quantlib/tree/slv/QuantLib
William Feller.
Two singular diffusion problems.

Vladimir Lucic.
Boundary conditions for computing densities in hybrid models via PDE methods.

The views expressed in this presentation are the personal views of the speakers and do not necessarily reflect the views or policies of current or previous employers.