
The Reposit Project

An Improved Solution

For Autogenerating

QuantLibXL Source Code

Father Guido Sarducci's Five Minute University

2

• Replace the gensrc Python script with the
reposit SWIG module

• QuantLibAddin object wrapper code
autogenerated not handwritten

• Objective: Export all of QuantLib to Excel

In five minutes, you learn
what the average college graduate remembers

five years after he or she is out of school.
https://www.youtube.com/watch?v=kO8x8eoU3L4

Reposit Project
Five Second
University:

Reposit Project Website
http://www.quantlib.org/reposit

3

Documentation

http://quantlib.org/reposit/documentation.html
Documentation for the Reposit project.

docs/ObjectHandler-docs-1.5.0-html/index.html
Documentation for the ObjectHandler repository.

docs/swig/Reposit.html
Documentation for the SWIG module.

4

Overview

5

namespace QuantLib {

 class Instrument

 { /*...*/};

 class Swap : public Instrument

 { /*...*/};

}

namespace QuantLibObjects {

 class Instrument :

 public ObjectHandler::LibraryObject

 <QuantLib::Instrument>

 { /*...*/};

 class Swap : public Instrument

 { /*...*/};

}

namespace ObjectHandler {

 map<string, Object*> repository;

 class Object

 { /*...*/};

 template <class T>

 class LibraryObject : public Object

 { /*...*/};

}

std::string idSwap = qlSwap(/*...*/);

qlInstrumentSetPricingEngine(/*...*/);

std::cout << “swap PV = " <<

 qlInstrumentNPV(idVanillaOption);

namespace QuantLibAddinCpp {

 qlInstrumentNpv();

 qlSwap();

}

ObjectHandler

QuantLibObjects

namespace QuantLibXL {

 qlInstrumentNpv();

 qlSwap();

}

QuantLib

QuantLibAddin – C++

QuantLibXL

C++ Client

Excel Workbook

inheritance

composition

composition

function
metadata

gensrc
source code generation

SWIG
interface
files

SWIG
reposit
module

source code generation

ObjectHandler
• Object repository
• Object base class
QuantLibObjects
• Classes which inherit from

Object and wrap QuantLib
• Native support for serialization
QuantLibAddin
• Functional interface which

exports QuantLibObjects to
target platforms (C++, Excel)

gensrc (deprecated)
• autogenerates addin source

code
SWIG reposit module
• autogenerates object wrapper

and addin source code

Changes

Component Changes

Source code
generation

• The gensrc Python script is discontinued and is replaced by the Reposit SWIG
module.

ObjectHandler • Some ObjectHandler source code that was previously autogenerated by gensrc is
now maintained manually.

• Otherwise no changes to ObjectHandler code or functionality.
• I might like to rename ObjectHandler to Reposit.

QuantLibAddin • Object wrapper source code that was previously handwritten is now autogenerated
• Some less important source code (e.g. enumerations) that was previously

autogenerated is now maintained manually.
• C++ Addin is now easier to use and its interface is now more similar both to

QuantLib and to QuantLibXL.
• Conversion/Coercion code completely rewritten, cleaned up, clarified, and

commented. Many other minor improvements.

QuantLibXL • Old design supports 1,000+ functions, new design currently supports only a dozen
or so functions, enough to price an Equity Option.

• It is hoped that the new design will be easier to use and will result in more QuantLib
functionality being exported to Excel.

• In principle, changing the method of autogenerating source code should not change
the design of QuantLibXL. In practice, some things will change, e.g. function names.

6

This page provides an overview of how ObjectHandler, QuantLibAddin, and QuantLibXL
will change after gensrc is replaced by the Reposit SWIG module.

SWIG

7

SWIG
interface

files

SWIG
Python
module

quantlib_wrap.cpp american-option.py

SWIG
Perl

module

quantlib_wrap.cpp american-option.pl

Used in the normal way, SWIG performs two steps:

1) parse the SWIG interface files
2) generate a single source code file which can be compiled into an addin for the

target platform.

QuantLib-SWIG uses SWIG in the usual way:

Typical usage e.g. QuantLib-SWIG

SWIG

8

SWIG
interface

files

SWIG
Reposit
module

quantlib_wrap.cpp (not used)

6 global output files

6 output files per function group

Reposit relies on the core SWIG functionality to parse the interface files.
Reposit then does its own thing for code generation.
The standard SWIG output file is generated, but it is not used.
Instead Reposit generates a completely different set of output files.

We will describe the Reposit output files in more detail.
But first let us answer The Most Frequently Asked Question...

Custom usage by Reposit

SWIG Interface Files

9

How Come Reposit Doesn’t Reuse QuantLib’s SWIG Interface Files?

namespace QuantLib {

 class Instrument {

 public:

 //Instrument();

 void setPricingEngine(const boost::shared_ptr<QuantLib::PricingEngine>& engine);

 QuantLib::Real NPV();

 };

 class VanillaOption : public Instrument {

 public:

 VanillaOption(const boost::shared_ptr<QuantLib::StrikedTypePayoff>& payoff,

 const boost::shared_ptr<QuantLib::Exercise>& exercise);

 };

}

// plain option and engines

%{

using QuantLib::VanillaOption;

typedef boost::shared_ptr<Instrument> VanillaOptionPtr;

%}

%rename(VanillaOption) VanillaOptionPtr;

class VanillaOptionPtr : public boost::shared_ptr<Instrument> {

 public:

 %extend {

 VanillaOptionPtr(

 const boost::shared_ptr<Payoff>& payoff,

 const boost::shared_ptr<Exercise>& exercise) {

 boost::shared_ptr<StrikedTypePayoff> stPayoff =

 boost::dynamic_pointer_cast<StrikedTypePayoff>(payoff);

 QL_REQUIRE(stPayoff, "wrong payoff given");

 return new VanillaOptionPtr(new VanillaOption(stPayoff,exercise));

 }

 }

};

QuantLib

Reposit

Shown at left:

• the QuantLib SWIG interface

file for an Option
• the Reposit SWIG interface

file for an Option

The QuantLib SWIG files were
written before SWIG
introduced support for boost
shared pointers. The file
contains additional logic to
hide the shared pointer.

Reposit’s SWIG interface file is
much more similar to the
corresponding QuantLib C++
header file.

Output Files

10

Path Component

ComplexLibAddin/clo/obj_all.hpp #include directives

ComplexLibAddin/clo/serialization/register_creators.cpp register addin classes with the serialization layer

ComplexLibAddin/clo/serialization/create/create_all.hpp #includes relating to creation of serializtion objects

ComplexLibAddin/clo/serialization/register/serialization_register.hpp #includes relating to registration for serialization

ComplexLibAddin/clo/serialization/register/serialization_all.hpp #includes relating to registration for serialization

ComplexLibAddin/AddinCpp/add_all.hpp #includes for the C++ addin

Component

ComplexLibAddin/clo/valueobjects/vo_xx.?pp implementation of value objects in support of serialization

ComplexLibAddin/clo/serialization/create/create_xx.?pp functions to create objects as they are deserialized

ComplexLibAddin/clo/serialization/register/serialization_xx.?pp register addin classes with the serialization layer

ComplexLibAddin/clo/obj_xx.?pp addin objects that wrap classes in the library

ComplexLibAddin/AddinCpp/add_xx.?pp the functions in the C++ addin

ComplexLibXL/clxl/functions/function_xxx.cpp The functions in the Excel addin

Reposit generates six output files global to the Addin:

Reposit generates six output files for each group of functions (instruments, term structures, etc:

namespace SimpleLib {

 std::string func();

 class Adder {

 private:

 long x_;

 public:

 Adder(long x);

 long add(long y);

 };

};

SimpleLib

11

Very nearly* the smallest Reposit project that it is possible to have.

* you could make it smaller by dropping the class and keeping only the function...

1. Define your Library

3. Generate your Addins

4. Run them 

2. Create your SWIG interface file

ComplexLib

12

This example project supports a bucket list of all features supported by Reposit.

Feature Description/Example

Functions std::string helloWorld();

Typedefs typedef double Real;

Objects class Foo { ... };

Inheritance class Bar : public Foo { ... };

Conversions void f(Real r);

Coercions void setQuote(X x); // x could be a double or a string id of a Quote object

Enumerated Types enum AccountType { Current, Savings };

Enumerated Classes class TimeZoneUtc : public TimeZone { /* ... */ };

Enumerated Pairs* template<type A, type B> class Foo { ... };

Custom Enumerations* Calendar factory – create new joint calendars on the fly as they are named.

Overrides The developer may suppress autogeneration of selected source code files in order to provide handwritten code.

Serialization* Serialization of objects, exactly as in the old build of ObjectHandler/QuantLibAddin/QuantLibXL.

* not yet supported

Inheritance

13

Example – Step 1 of 7 – Overview

Parent? Constructor? Code Description

No Yes full class inheriting LibraryObject

If the library class is a base class, and if it has a constructor, then reposit autogenerates a
complete implementation of the wrapper class. For base class ComplexLib::Foo, you get a
wrapper class ComplexLibAddin::Foo which inherits from helper class
ObjectHandler::LibraryObject.

No No OH_LIB_CLASS
If the library class is a base class, and if it has no constructor, reposit still generates a
wrapper class. But the wrapper is a skeleton and the entire implementation is provided
by macro OH_LIB_CLASS.

Yes Yes full class inheriting Object

If the library class is a derived class, and if it has a constructor, then reposit
autogenerates a complete implementation of the wrapper class. For base class
ComplexLib::Bar deriving from ComplexLib::Foo, you get a wrapper class
ComplexLibAddin::Bar deriving from ComplexLibAddin::Foo.

Yes No OH_OBJ_CLASS
If the library class is a derived class, and if it has no constructor, reposit still generates a
wrapper class. But the wrapper is a skeleton and the entire implementation is provided
by macro OH_OBJ_CLASS.

Here we take one of the features supported by Reposit – Inheritance –
and work through the ComplexLib example step by step.

When your C++ library (e.g. QuantLib) contains inheritance relationships,
the code to be autogenerated by Reposit for each class will differ
depending upon whether the class has a parent and/or a constructor.

Inheritance

14

Example – Step 2 of 7 – Library Header File

This is a C++ header file from
the example ComplexLib
application.

It defines a few inheritance
relationships.

In the real world this would be
a header file from QuantLib or
some other library that you
want to wrap.

Inheritance

15

Example – Step 3 of 7 – SWIG interface file

This is a SWIG interface file,
written for consumption by the
Reposit SWIG module.

This file defines the subset of
the C++ header file that we
want to export to our Addins
(C++ and Excel).

This file is very similar in format
to the corresponding C++
header file.

Inheritance

16

Example – Step 4 of 7 – Autogenerated Object Wrapper Code

This is the autogenerated
wrapper code.

In this example we call it
ComplexLibAddin, in the real
world this would be
QuantLibAddin
(QuantLibObjects).

Each class here inherits from
ObjectHandler::Object and
holds a pointer to a ComplexLib
object.

Inheritance

17

Example – Step 5 of 7 – Autogenerated Addin Code

This is the autogenerated code
for the C++ and Excel addins.

As Excel worksheet functions
cannot directly handle C++
constructors, this code is
functional, not object oriented.

All of the code required for the
necessary dataype conversions
has been autogenerated.

Inheritance

18

Example – Step 6 of 7 – Client Code

For C++, we write by hand
some code to test the Addin.

For Excel we enter the same
formulas into a workbook (see
below).

Inheritance

19

Example – Step 7 of 7 – Client Code / Spreadsheets

This is the output from the C++
client program, and from the
corresponding test workbook.

On both platforms the
interface and behavior is the
same.

Improved C++ Addin

20

QuantLibAddin
interface is
now more
similar both to
QuantLib and
to QuantLibXL.

QuantLib QuantLibAddin QuantLibXL

Development Environment

21

Reposit SWIG module

repos/reposit/swig/Source/Modules/reposit.cxx

Reposit SWIG interface file

repos/reposit/swig/Lib/reposit/reposit.swg

SimpleLib Example

repos/reposit/swig/Examples/reposit/simple

ComplexLib Example

repos/reposit/swig/Examples/reposit/complex

new QuantLibAddin

repos/reposit/quantlib/QuantLibAddin2

new QuantLibXL

repos/reposit/quantlib/QuantLibXL2

Typemaps

22

Buffer Typemap

rp_val_* rp_tm_val_prm

rp_val_* rp_tm_val_dcl

rp_val_* rp_tm_val_ser

rp_val_* rp_tm_val_nam

rp_val_* rp_tm_val_ini

rp_val_* rp_tm_val_cnv

rp_ser_* rp_tm_cre_cnv

rp_obj_* rp_tm_obj_ret

rp_obj_* rp_tm_obj_rdc

rp_add_* rp_tm_add_ret

rp_add_* rp_tm_add_prm

rp_add_* rp_tm_add_cnv

rp_add_* rp_tm_add_cll

rp_add_* rp_add_ret

rp_add_* rp_tm_add_oh_get

rp_xll_* rp_tm_xll_cod

rp_xll_* rp_tm_xll_prm

rp_xll_* rp_tm_xll_cnv

rp_xll_* rp_tm_xll_cll_obj

rp_xll_* rp_tm_xll_cll_val

rp_xll_* rp_tm_xll_ret

rp_xll_* rp_xll_get

rp_xll_* rp_tm_xll_rdc

Reposit defines a series of typemaps. Each typemap is used
to generate the required code at a specific point in a source
code file.

The application developer has to map the types defined in his
library to the type placeholders defined by Reposit. This will be
the most difficult step for exporting QuantLib to QuantLibXL.

rp_tp_double
rp_tp_cnv
rp_tp_crc
rp_tp_enm
rp_tp_enm_cls
rp_tp_add_obj

Normally SWIG typemaps are
applied directly to native C++ types,
e.g. bool, double, etc.

Reposit instead defines a few
placeholders for C++ types. Each
addin must map its own types to
these placeholders.

%apply rp_tp_double { LongDouble };
%apply const rp_tp_double & { const LongDouble & };

%apply rp_tp_cnv { Grade };

%apply rp_tp_crc { Grade2 };

%apply rp_tp_enm { AccountType };
%apply rp_tp_enm { Account2::Type2 };
%apply rp_tp_enm_cls { boost::shared_ptr<TimeZone> };

Status

23

Done:
• Working prototype supporting an Equity Option,

including addins for C++ and Excel.

To Do:
• Implement support for the rest of the QuantLib

functionality – Yield curve bootstrap, price interest
rate swap, everything else.

• Implement support for serialization
• For all addin functions, need to autogenerate the

trigger/permanent/anonymous parameters
• LibreOffice Calc addin?

