QuantLib Erlkonige J

Peter Caspers
IKB

December 4th 2014

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 1/ 47

-
Erlkonig

Peter Caspers (IKB) QuantLib Erlkonige December 4th 2014 2 /47

Table of contents

6000000000

No Arbitrage SABR

ZABR, SVI

Linear TSR CMS Coupon Pricer

CMS Spread Coupons

Credit Risk Plus

Gaussianld Models

Simulated Annealing

Runge Kutta ODE Solver

Dynamic Creator of Mersenne Twister

Questions

QuantLib Erlkénige

December 4th 2014

3/ 47

No Arbitrage SABR - the model

Paul Doust, No-arbitrage SABR, Journal of Computational Finance,
Volume 15 / Number 3, Spring 2012. Main Features:

@ approximates the density (with a positive function), thereby producing
an arbitrage free smile over strike range [0, c0)

@ assumes arbsorbing barrier at F' = 0 and reproduces precomputed
arbsorption probabilities generated by a MC simulation (published by
Paul Doust as well)

© call prices are computed by numerical integration, implied volatilities
are computed by inverting the Black formula

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 4 /47

No Arbitrage SABR

No Arbitrage SABR Example

40 ‘ ‘ ‘
Hagan (2002) ———
Doust -

30

20

10 b

density
o
T

-10 /|

20|

-30 }J

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
strike

Figure : SABR smile a = 0.02, 8 = 0.40, v = 0.30, p = 0.30, 7 = 30.0, f = 0.03
December 4th 2014 5 /47

Peter Caspers (IKB) QuantLib Erlkdnige

No Arbitrage SABR classes

gl/experimental/volatility/

NoArbSabrModel core computation formulas
NoArbSabrInterpolation interpolation class
NoArbSabrSmileSection smile section by parameters
NoArbSabrInterpolatedSmileSection | interpolating smile section
SwaptionVolcubela volatility cube

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 6 /47

No Arbitrage SABR

Design changes

Make the SABR interpolation and volatility cube classes generic, so that
both models (and possibly more like SVI, ZABR) are accepted. The old
SwaptionVolCubel class e.g. is now retrieved by

struct SwaptionVolCubeSabrModel {

typedef SABRInterpolation Interpolation;

typedef SabrSmileSection SmileSection;
+;

typedef SwaptionVolCubelx<SwaptionVolCubeSabrModel>
SwaptionVolCubel;

and likewise for the new “la”-variant of the cube using the noarb-SABR
formula.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 7 /47

NoArbSABR - limitations

@ there are examples of parameters («, 3, v, p) for which the
recalibration of the model implied forward does not work

@ the implied volatility (since inverted from call prices) is not smooth
for far otm strikes in some cases (but actually rarely needed because
calls, digitals and the density is directly available !)

© in general, never underestimate the benefit of a pure closed form
formula (i.e. Hagan 2002) over a computation involving numerical
procedures ...

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 8 /47

ZABR, SVI

There are other models fitting in this framework like Andreasen’'s ZABR
model

dF = FPodW (1)
do =voldV (2)
dVdW = pdt (3)

with an additional parameter v giving more flexibility for wing calibration
to e.g. CMS quotes.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 9 /47

ZABR, SVI

/ZABR Example

0.9
0.8
0.7
0.6
0.5
0.4

0.3

implied lognormal volatility

0.2

0.1

"SABR
ZABR10
ZABR 05 e
ZABR 1.5
0.1 0.2 03 0.4 05 06

strike

0.7

Figure : SABR (Hagan 2002 expansion) a = 0.03, 8 = 0.70, v = 0.20, p = —0.30, 7 = 5.0, f = 0.03 vs. ZABR (short

maturity expansion) for different v = 0.5,1.0, 1.5 controlling the smile wings.

Peter Caspers (IKB)

QuantLib Erlkénige

December 4th 2014

10 / 47

ZABR, SVI

/ZABR - more features and limitations

@ two short maturity expansions (normal and lognormal implied
volatility)

@ an “equivalent” Dupire - style FD approximation, which is fast and
arbitrage free in particular

@ a full finite solution, for benchmarking and testing (slow of course)
@ but ... approximations are not very good for long option expiries

© advantages for CMS pricing yet to be proved in a productive setting

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 11 / 47

SV

SVI is another popular smile model, with the total variance given by
vzt:a—l—b(p(k—m)—i— (k—m)2+02> (4)

with log moneyness k = log K/F, K = strike, F' = forward.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 12 / 47

SVI Example

0.65 \ T
0.6 SvI §

0.55

05 |
0.45

0.4

0.35

implied lognormal volatility

0.3 =

0.25 T e

0.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

strike

Figure : SVI fit to sample input data generated by SABR (a = 0.08, 8 = 0.90, v = 0.30, p = 0.30, 7 = 10.0, f = 0.03)

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 13 / 47

Implementation of SVI 1/2

We can use the generic framework, so e.g. the implementation of the SVI
interpolation class is merely specifying the SVI specific things ...

typedef SviSmileSection SviWrapper;
struct SviSpecs {

Size dimension() { return 5; }
void defaultValues(std::vector<Real> ¶ms, std::vector<bool> ¶mIsFixed,
const Real &forward, const Real expiryTime) { /* ... */ }
void guess(Array &values, const std::vector<bool> ¶mIsFixed,
const Real &forward, const Real expiryTime,
const std::vector<Real> &r) { /* ... */ }
Array inverse(const Array &y, const std::vector<bool> &,
const std::vector<Real> &, const Real) { /* ... */ 1}
Array direct(const Array &x, const std::vector<bool> ¶mIsFixed,
const std::vector<Real> ¶ms, const Real forward) { /+ ... */ }
typedef SviWrapper type;
boost: :shared_ptr<type> instance(const Time t, const Real &forward,
const std::vector<Real> ¶ms) { /* ... */ }

Caspers (IKB) QuantLib Erlkénige December 4th 2014

14 / 47

Implementation of SVI (2/2)

and use this in the generic implemenation:

class Svilnterpolation : public Interpolation {

template <class Il1, class I2>
Svilnterpolation(const I1 &xBegin, ...) {
impl_ = boost::shared_ptr<Interpolation::Impl>(
new detail::XABRInterpolationImpl<I1, I2, detail::SviSpecs>(
xBegin, xEnd, yBegin, t, forward,
boost: :assign::1list_of (a) (b) (sigma) (rho) (m),
boost: :assign::1list_of (aIsFixed) (bIsFixed) (sigmaIsFixed) (
rhoIsFixed) (mIsFixed),
vegaWeighted, endCriteria, optMethod, errorAccept, useMaxError,
maxGuesses)) ;
coeffs_ = boost::dynamic_pointer_cast<
detail: :XABRCoeffHolder<detail: :SviSpecs> >(impl_);
s

Note that XABR. .. is already to narrow as the label for the generic class.
Better than the other way round ...

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 15 / 47

SVI - limitations

@ uses the "raw” parametrization, which does not allow for easy
parameter interpretation

@ calibration is naive, i.e. does not avoid local minima / parameter
identifcation problem cases

Peter Caspers (IKB) QuantLib Erlkénige December 4th 2014

16 / 47

ZABR, SVI

Other smile models, general thoughts

There are other models, that are not fitted, but interpolate given points by
construction such that the resulting smile is arbitrage free, e.g.

@ KahaleSmileSection which is already used implicity by the Markov
functional model

@ BDK which fixes arbitrageable wings and introduce new parameters
for wing calibration

Goal: Integrate them as well in a uniform infrastructure providing
@ an interpolation class

© a smile section which takes either parameters, market data or a
source smile section to be smoothed / made arb-free

© a swaption volatility cube with the possibility to calibrate to the cms
market and a caplet volatility surface

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 17 / 47

TSR CMS Coupon Pricers

A terminal swap rate (TSR) model is given by a mapping «

P(t,tp)
A(tf (5)

a(S(t) =

where t,, is the coupon payment date and A(t) the annuity of the
underlying swap rate S. Then (integration by parts) the npv of a general
CMS coupon A(0)EA(P(t,t,)A(t)"1g(S(t))) is given by

5(0)

zmmemk+zzfumemk (6)

A(0)S(0)x(S(0)) +/

—00

with ¢ begin the fixing date of the coupon, R and P prices of market
receiver and payer swaptions and weights w(s) = {a(s)g(s)}".

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 18 / 47

Linear TSR CMS Coupon Pricer

Hagan non parallel shifts model

In Hagan's classic paper, the model A.4 “non parallel shifts” corresponds
to the following choice of «
Se—|h(tp)=h(t)|x

0,tn) ,— T
1 — Eda) e—lh(tn) —h(0)

alS) =

(7)

with ¢, being the last payment date of the underyling swap and

h(s) — h(t) = I%M with a mean reversion parameter x and x
implicitly given by

5(t) S 7 P(0, t)e M) =hOle 1 p(0,)¢ e ROk = P(0,1) (8)

with 7;,%; being the yearfractions and payment dates of the fixed leg of
the underlying swap.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 19 / 47

Linear TSR model

The linear terminal swap rate model is defined by

a(S)=as+b 9)

b is determined by the no arbitrage condition

P(0,t,)/A(0) = EA(P(t,t,) JA(t)) = aS(0) +b (10)
a can be specified indirectly via a reversion k by setting
0 P(t,ty)
“=35@) Al (11)

and evaluating the r.h.s. within a one factor gaussian model.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 20 / 47

Put Call Parity Example

le-04

1e-06 [~]

1e-08 |

le-10

le-12

le-14

put call parity violation

le-16

le-18

0 001 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

strike

Hagan (Numeric, NonParallelShifts) ———
Linear TSR

Figure : Parity error for a CMS10y coupon with in arrears fixing in 10y from today, Forward is 0.03, Volatility is given by a
SABR surface with a = 0.10, 8 = 0.80, v = 0.40, p = —0.30, reversion is zero, Integration Accuracy for the Linear TSR
pricer is 10710

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 21 / 47

Linear TSR CMS Coupon Pricer

Performance

Computation time for pricing of 4000 optionlets (parameters as before) on
Intel(R) Core(TM) i7-2760QM CPU @ 2.40GHz, single threaded.

NumericHaganPricer(Standard) 1840ms
NumericHaganPricer(NonParallelShifts) | 5882ms
AnalyticHaganPricer(Standard) 770ms
AnalyticHaganPricer(NonParallelShifts) | 741ms
LinearTsrPricer 505ms

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 22 / 47

Fast Erlkonig

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 23 / 47

CMS Spread Coupons

Still missing: a coupon class which models cms spread coupons
7(CMS10y — CMS2y) (12)

possibly capped and / or floored.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 24 | 47

CMS Spread Coupons

Approach 1: Formula index

Introduce an artificial index derived from InterestRateIndex

SwapSpreadIndex(const std::string& familyName,
const boost::shared_ptr<SwapIndex>& swapIndexl,
const boost::shared_ptr<SwapIndex>& swapIndex2,
const Real gearingl = 1.0,
const Real gearing2 = -1.0);

and build everything else on top of it as with the other coupons based on
ibor or cms indexes.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 25 / 47

Approach 1: Repairing the class hiearchy

Since the formula index does not have own fixings, we would have to
adjust the index base class by adding

//! check if indez allows for native fizings
virtual void checkNativeFixingsAllowed() {}

and forbid native fixings in formula based indices

//! check if index allows for native fizings
virtual void checkNativeFixingsAllowed() {}
void checkNativeFixingsAllowed() {
QL_FAIL("native fixings not allowed in swap spread index, refer to "
"underlying indices instead");

}

A nicer solution would be to make the addFixing methods virtual and
throw an exception in CMS spread index, but they are template methods.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 26 / 47

CMS Spread Coupons

Approach 2: Construct coupons with two swap indexes

If two swap indexes are used to construct a cms spread coupon we would
need a more flexible way to construct floating legs, since

template <typename InterestRateIndexType,
typename FloatingCouponType,
typename CappedFlooredCouponType>
Leg Floatingleg(const Schedule& schedule,
const std::vector<Real>& nominals,
const boost::shared_ptr<InterestRateIndexType>& index,
const DayCounter& paymentDayCounter,
BusinessDayConvention paymentAdj,

const
const
const
const
const

std:
std:
std:
std:
std:

:vector<Natural>& fixingDays,
:vector<Real>& gearings,
:vector<Spread>& spreads,
:vector<Rate>& caps,
:vector<Rate>& floors,

bool isInArrears, bool isZero) {

only allows for one index.

Peter Caspers (IKB)

QuantLib Erlkénige December 4th 2014

27 / 47

Approach 2: Coupon Factories

We could introduce a factory instead of the template parameters

Leg Floatingleg(const FloatingCouponFactory& factory,
const Schedule& schedule,

which can generate plain, capped / floored and digital couons for the ibor,
cms, cms spread flavours.

class FloatingCouponFactory {
virtual boost::shared_ptr<FloatingRateCoupon>
plainCoupon(const Date &paymentDate, Real nominal,...)
virtual boost::shared_ptr<CappedFlooredCoupon>
cappedFlooredCoupon(const Date &paymentDate, Real nominal,...)
virtual boost::shared_ptr<DigitalCoupon> digitalCoupon(
const Date &paymentDate, Real nominal, const Date &startDate,...)

virtual Natural defaultFixingDays() const = 0;
3

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 28 / 47

CMS Spread Coupons - Summary

@ Introducing a formula based index would not exactly fit the semantics
of the Index class. We would have to distinguish between native
indexes (with own fixings) and derived ones. On the other hand this
seems to be a quite generic approach, since formula based indexes
could be used whereever an InterestRatelndex is allowed

@ Using two indexes in the spread coupon class forces us to introduce a
more flexible way to construct floating legs, e.g. via factories. This
keeps the design clean and the semantics of index sharp. However
this is not 100% backward compatible since Floatingleg is in the
main QuantLib namespace.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 29 / 47

Credit Risk Plus

A single period, nominal based credit portfolio model, based on Credit
Risk Plus, with some extensions allowing for correlated sectors (Integrating
Correlations, Risk, July 1999).

CreditRiskPlus(const std::vector<Real> &exposure,
const std::vector<Real> &defaultProbability,
const std::vector<Size> §or,
const std::vector<Real> &relativeDefaultVariance,
const Matrix &correlation, const Real unit);

The loss distribution is computed analytically, so very fast. The model
comes with a decomposition of the unexpected loss into single obligors’
marginal losses.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 30 / 47

Gaussianld Models

Framework for one factor models with the following interface
virtual const Real numeraireImpl(const Time t, const Real y,

const Handle<YieldTermStructure> &yts) const = 0;
virtual const Real zerobondImpl(const Time T, const Time t,
const Real y,
const Handle<YieldTermStructure> &yts) const = 0;

Currently two instances exist

© MarkovFunctional, a non parametric Markov functional model with
piecewise volatility and constant reversion

@ Gsr, a Hull White model with piecewise volatility and piecewise
reversion

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 31/ 47

Gaussianld Models

Gaussianld Models - Features

©@ multi-curve enabled

@ engines for standard swaptions, swaptions with non-constant nominal,
rates, float-float swaptions

© engines inherit from BasketGeneratingEngine that can generate
calibration baskets by npv-delta-gamma matching

@ engines take an OAS allowing for exotic bond valuation

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 32 /47

Simulated Annealing

Simulated Annealing

A global optimizer based on Nelder-Mead and additional noise in the
target function.

@ the noise is exponentially distributed with parameter 1/T
(“Temperature”), i.e. the expectation and the standard deviation of
the noise is both T

@ the optimization starts with a temperature 7" > 0 which decreases to
zero during the optimization

© if the start temperature is high enough and the decrease is slow
enough, a global minimum is found with probability one

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 33 /47

Simulated Annealin

Global optimization test function

%
A / . 0.5
1NN f i
TR i AR f
R f /
Ng{s}:',:,",",:,; N i Y it 0.4
- 0.3
0.2
0.1
z 0

: 1 2, 2
Figure : test function for global optimization {Sm(”(z"';))Cos(géyﬂ))ﬁ}u +y)

Peter Caspers (IKB) QuantLib Erlkonige December 4th 2014 34 / 47

Simulated Annealing

Comparison of optimizers

Optimizer ‘ found minimum ‘ target fct ‘ #evaluations
Simplex (2.965, 2.965) 0.356 128
SimulatedAnnealing (0.0, 0.0) 0.0 10962
DifferentialEvolution (0.0, 0.0) 0.0 500700

@ Nelder-Mead lambda = 0.2

@ Start Temperature for simulated annealing is 7= 1.0 and decreased
by a factor of 0.9 each 5 optimization steps

© Configuration for DE is the default one

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 35 / 47

Runge Kutta ODE Solver

An ODE solver using a forth order Runge Kutta scheme with adaptive step
size control (as described in Numerical Recipes in C, Chapter 17.2). It
integrates

) (13)

over an interval [a,b] for f : [a,b] — K" with K denoting the real or
complex numbers with initial condition f(a) = f,.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 36 / 47

Runge Kutta ODE Solver

Solving the modified Bessel equation

As an example we solve the modified Bessel equation

22y +xy — (2 +a)y=0 (14)

for « = 1 with y(0) = 0 and ¢/(0) = 0.5 over [0, 10] and compare it to the
expected result 1,(10) (modifiedBesselFunction_i).

Peter Caspers (IKB QuantLib Erlkénige December 4th 2014 37 / 47
P!

Runge Kutta ODE Solver

Reduction to first derivatives

Equation 14 is equivalent to the system

y ==z (15)
222 4z — (2*+a)y=0 (16)

with y(0) = 0 and 2(0) = ¢/(0) = 0.5.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 38 / 47

Code example for ODE solving

The ODE F' can be defined as follows:

Disposable<std::vector<Real>> rhs(const double x,
const std::vector<Real> &f) {

std: :vector<Real> result(2);
result[0] = £[1];
if (close(x, 0.0))

result[1] = (2.0 + alpha * alpha) * f£[0] / 2.0;
else

result[1] = ((x * x + alpha * alpha) *

£f[0] - x * £[1]) / (x * x);

return result;

Peter Caspers (IKB) QuantLib Erlkénige December 4th 2014

39 / 47

Code example for ODE solving

To compute I;(10) we can then write

AdaptiveRungeKutta<Real> rk(le-16);
std: :vector<Real> y;

y += 0.0, 0.5;

Real il = rk(rhs, y , 0.0, 10.0)[0];

with an ultra-tight tolerance here, just to see what is possible.

Peter Caspers (IKB) QuantLib Erlkénige December 4th 2014

40 / 47

Runge Kutta ODE Solver

ODE solution vs. semi-analytical solution

le-10

le11 | o]
le12 | ~ 1

le-13 /]

le-14 + / E
n A

le-15 \
le-16 7‘ ‘ (‘ E
le-17 : . . .

0 2 4 6 8 10

error
\

Figure : Runge Kutta adaptive step size solution with ¢ = 10716 vs. modifiedBessel i

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 41 / 47

Dynamic Creator of Mersenne Twister

Dynamic Creator of Mersenne Twister

Makoto Matsumoto and Takuji Nishimura, “Dynamic Creation of
Pseudorandom Number Generators’ and their implementation as a C
library (http://www.math.sci.hiroshima-u.ac.jp/“m-mat/MT/DC/dc.html)
addresses two needs

© create Mersenne Twister instances with smaller state space than the
classic instance (624 words of 32 bit) and smaller period than
219937 _ 1 or bigger ones if you really want ...

@ create “independent”’ Mersenne Twister intances for different id's for
use in parralel monte carlo

The QuantLib wrapper support both dynamic creation of instances
(MersenneTwisterDynamicRng) as well as the usage of precomputed
instances (MersenneTwisterCustomRng<Description>).

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 42 / 47

Dynamic Creator of Mersenne Twister

Instantiation of dynamic MT's

Dynamically create an instance with 32 bit word size, p = 521, creator
seed 123, id 0 and seed 42:

MersenneTwisterDynamicRng mt (32,521, 123, 0, 42);

Use a precomputed instance with seed 42 (p is 19937 here, id is 0)

MersenneTwisterCustomRng<Mtdesc19937_0> mt (42);

The second alternative is much faster in random number generation. Also
it takes a long time to dynamically create MT instances for bigger p.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 43 / 47

Dynamic Creator of Mersenne Twister

Example: Parallel RNG streams

This code computes 7 using parallel mc with 8 threads

#define BOOST_PP_LOCAL_LIMITS (0, 7)
#define BOOST_PP_LOCAL_MACRO(n) MersenneTwisterCustomRng<Mtdesc19937_##n> mt##n(42);
#include BOOST_PP_LOCAL_ITERATE()
omp_set_num_threads(std: :min(8, omp_get_max_threads()));
Real sum = 0.0;
Size N = 1E8;
#pragma omp parallel for reduction(+ :
for (Size i = 0; i < N; ++i) {
Size thread = omp_get_thread_num();
Real u=0.0,v=0.0;
#define BOOST_PP_LOCAL_LIMITS (0, 7)
#define BOOST_PP_LOCAL_MACRO(n) if (thread==n) { u=mt##n.neztReal (); v=mt##n.neztReal); }
#include BOOST_PP_LOCAL_ITERATE()
if (uxutvxv <= 1.0) sum+=1;

sum) schedule(static)

}

std::cout << std::setprecision(8) << 4.0 * sum / N << std::endl;

Actually this does not run faster multithreaded due to compiler
optimizations (vectorization) of the loop, nevertheless illustrates how to

use it.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 44 / 47

What does “independent” mean 7 (1/2)

The MT sequence can be seen as a recurrence

Sp = Asp_1 (17)
xn = Bsp (18)

with a state transition matrix A and an output transformation matrix B.
sp, satisfies the following equation in F’; k being the bit size of the state
space

X(A)sn— =0 (19)
with the characteristic polynomial x of A (Cayley Hamilton Theorem).

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 45 / 47

What does “independent” mean 7 (2/2)

Two independent MT instances have by definition coprime characteristic
polynomials f, g, thus there is an isomorphism of the residual polynomial
rings (thanks to the chinese remainder theorem)

Fo[T1/(fg) = Fa[T]/(f) x F2[T]/(9) (20)

which is formalizing what independdence of the recurrences of the two MT
instances mean.

Peter Caspers (IKB) QuantLib Erlkdnige December 4th 2014 46 / 47

Questions

Questions / Discussion

French Erlkonig

Peter Caspers (IKB) QuantLib Erlkonige December 4th 2014 47 | 47

	No Arbitrage SABR
	ZABR, SVI
	Linear TSR CMS Coupon Pricer
	CMS Spread Coupons
	Credit Risk Plus
	Gaussian1d Models
	Simulated Annealing
	Runge Kutta ODE Solver
	Dynamic Creator of Mersenne Twister
	Questions

