
QL Integration into Scala and Excel

Martin Dietrich



E.ON Global Commodities

 Over 1000 professionals, active on over 20 exchanges in more than 40 

countries

 Over 1000 counterparties in more than 50 countries

 850,000 trades in 2011

 Market energy, mange commodity risk and provide asset optimization 

services for the E.ON Group and its third party customers

 Main trading activities: Power, Gas, Emissions, Oil, Coal, Storage

 Spot, physical forward, options, futures, spread, swaps

 Swaps, virtual storage, swing gas

 Physical coal, own fleet of vessels

2



What makes it special?

 Asset-backed trading

 Permanent obligation to mark and hedge E.ON‘s asset portfolio

 Physical delivery with hundreds of physical constraints in fuel supply and 

power generation

 Limited liquidity with a significant market share in physical positions

 Simple products like options and forwards

 Complex and structured products like VPP and Swing

3



Example: Swing Contract

 Periodic delivery within a given delivery period at a given strike price

 Buyer has the right to exercise nomination at short notice (day ahead)

 Min and max number of exercises

 Min and max volume per sub period (month)

 Min and max volume for the whole period (gas year)

 Coupled American style options – flexible but limited exercise

 Complex optimization problems solved by dynamic or linear programming

4



Why QuantLib

 Demand in financial and numerical open source library

 Advanced, mature and tested

 Not reimplementing pricing engines, volatility modelling, Brownian bridge 

and many more

5



Why not exclusively QuantLib

 Commodity markets are different

 Additional financial engineering requirements

 Want to leverage functional programming languages

 Access identical logic and underlying market data regardless of client

 Big data, half-hourly profiles or forward curves

 Interacting with pricing engines from ETRM, Excel or just a simple browser

 Access the power and performance of a grid from the desktop

 Agile development

6



Technology Stack

7



Development Dependencies

eet.apps.quantlib-swig

WebSocket

JSON

OS/Arch dependent dll

8



Why Excel-DNA

 Integrating .Net into Excel

 Packaging tool for script files and assemblies to generate a single XLL

 32/64-bit support

 Asynchronous non-blocking calls

 Task-based operations (.Net 4.0)

 Per-call WebSocket using WebSocket4Net

 Message transfer via JSON using Json.NET

 Automatically resizing the result range

9



10



11



Interacting with WebSockets

12



Why WebSockets

 Stateless protocol

 Real-time full-duplex communication (sending and receiving at a time)

 Alternative to long polling or Comet

 Less bandwith usage

 Initial HTTP request with an upgrade request to the WebSocket protocol

 Independent in and out streams

 No request/response cycle

13



Why favouring JavaScript Object Notation

 JSON is a text-based data format for data exchange

 Lightwight – no tags, no attributes, less bandwith-intensive

 Limited data types (strings, numerics, Booleans, arrays, objects, nulls)

 Java and .Net APIs at hand for (de)serialization

 Can be persisted in NoSQL databases like MongoDB

14



15



Continuous Integration – the Plugin

16



Continuous Integration – the Plugin

17



Continuous Integration – the Plugin

18



Why Play

 Full-stack web framework for scala

 Integrated HTTP server, build system and cache

 Asynchronous I/O

 Stateless web application

 Live code and configuration changes

 Remote debugging in single threaded environment

 Type safety

 Build-in support for JSON validation

 Build-in support for WebSockets

19



Exposing a WebSocket with Play

 Specifying the routes

 Exposing the WebSocket

20



Exposing QuantLib to Play

 SWIG

 Simplified Wrapper and Interface Generator

 Java extension to SWIG writes the Java Native Interface (JNI)

 SWIG wraps C++ code using Java proxy classes

 Embedded 32/64bit dll delivered with the jar file, extraction on the fly

 no need for a separate dll deployment

 QuantLib in a multi-threaded environment

 SWIG/QuantLib Objects are not shared between different threads

 Deregister observer during garbage collection via call back hook

 Thread local singleton pattern

21



Continuous Integration - QuantLib

22



Continuous Integration - QuantLib

23



Continuous Integration - SWIG

24



Continuous Integration - SWIG

25



Artifactory

 Central artifact repository for local and remote repositories

 Integrates with maven, ivy and NuGet

26



Debugging

 Start from VS in debug mode - debug your c# code

27



Debugging

 Run play in debug mode

 Attach remote debugger - debug your scala code

28



Hands-On

 Pricing a set of vanilla gas options from a spread sheet

 Sending a pricing request from a web browser

 Pricing a vanilla option from LexiFi

29



Conclusion

 QuantLib can be integrated into multi-language/architechture system

 High throughput

 Scalable with standard web components

 Continous Integraiton and TDD

 Central pricing server

30



Links and Tutorials

 Principles of Reactive Programming 

https://www.coursera.org/course/reactive

 Functional Programming Principles in Scala

https://www.coursera.org/course/progfun

31


