Structured Payoff Scripting in QuantLib

Dr Sebastian Schlenkrich

Dusseldorf, November 30, 2017

© d-fine — All rights reserved

Why do we want a payoff scripting language? Let’s start with a teaser
example...

Home Insert Page Layout Formulas Data Review View Team d-fine Macros
El hd =
E F G
1
2 Key Payoff
3 L Libor-MC#0008
il
5 Script
6 RA=0
7 RA =RA+(L(100ct2018) >0.01) *(L(100ct2018) <0.03)
3 RA=RA+({L{110ct2018) >0.01) *(L(110ct2018) <0.03)
29 RA =RA + (L(09Nov2018) >0.01) * (L{09Nov2018) < 0.03)

30 RA=RA+(L(12Nov2018)>0.01) * (L(12Nov2018) <0.03)
31 CF=RA/24 * (L(12Nov2018) + 0.005) *31/360
32 payoff = Pay(CF, 12Nov2018)
33
34 Script obj_00021#0001
35 NPV 0.14%
36 Effective Col 1.69%
37

} Payoff scripting provides great flexibility to the user and quick turnaround for ad-hoc analysis

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib © d-fine — All rights reserved | 1

Agenda

» Payoffs, Paths and Simulations

» A Flex/Bison-based Parser for a Bespoke Scripting Language

» Some Scripting Examples

» Summary

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib © d-fine — All rights reserved | 2

Payoffs, Paths and Simulations

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations © d-fine — All rights reserved | 3

A path is an abstract representation of the evolution of the world in time

General Path
p:[0,+0) - RN

Alternatives/specialisations:

» 1-factor modells on discrete observation
dates

p = [po, ..., pu]l € RM

» 1-factor model for European payoffs
Pp=poER

Payoff allows calculating a scalar quantity for a particular evolution (or realisation) of the world
Vip-R

} We consider general (abstract) paths and payoffs as functions mapping a path to a scalar quantity

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations © d-fine — All rights reserved | 4

Why does it have to be that abstract?

Assume p = [py, ..., py] € R then a payoff is a functional V: R® - R
» In C++ this may just be any function with the signature double payoff (vector<double> p)

» Example European call option

double call (vector<double> p) {
double strike = /* obtained from script context */
return max (p.back()-strike,0);

}
» Such functions could be created dynamically, e.g. via C++ integration of other languages®, e.g.

> JNI + Scala for scripting in Scala

> RiInside for scripting in R

But what if the model and thus the interpretation of p changes?
» Model A: p; = S(t;) (direct asset modelling)
» Model B: p; = log(5(t;)) (log-asset modelling)

The payoff should not know what kind of the path is. Instead the payoff should only use a pre-defined
interface to derive its value
(1) for details see e.g. hpcquantlib.wordpress.com/2011/09/01/using-scala-for-payoff-scripting/ dfine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations © d-fine — All rights reserved | 5

Less is more —
What do we really need to know from a path to price a derivative?

E.g. V(T) = [$,(T) = Sy(D)I* class Farh
(Equity) underlying asset values S;(-) and S,(-) at StochProcess™ process_;
Spre_ad MCSimulation* sim ;
Option expiry observation time T size_t idx_;
Path (...) { ... }
+ .
V(T) = [L(Tfix» Ty, Tz) - K] with Real asset(Time obsTime,
_ string alias) {
L(Tfix»Tl»Tz) — M 1o — 1 State* s = sim ->state(idx , obsTime);
E.g. Interest P(Tfix, T3) T,—T, return process ->asset (obsTime,
Rate Caplet s, alias);
zero bonds P(:,-) for observation time Ty, }
)] real zeroBond(Time t, Time T) {
and maturity times Ty, T, () State* s = sim ->state(idx , t);
return process ->zeroBond(t, T, s);
}
— . . real numeraire(Time obsTime) {
V(t) N(t) [E[V()/N(T)] State* s = sim ->state(idx , obsTime);
Discounting numeraire price N(-) at payment return process ->numeraire (obsTime, s);
}
observation time T };

The path only knows how to derive a state of the world at observation time and delegates calculation to the
underlying stochastic process (or model)
(1) plus deterministic spread discount factor D, to account for tenor basis dfine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations © d-fine — All rights reserved | 6

With the generic path definition the payoff specification becomes very easy

class Payoff {
Time observationTime ;

virtual Real at(Path* p) = 0;
virtual Real discountedAt (Path* p) { return at(p) / p->numeraire (observationTime); }

}s

class Pay : Payoff ({

1 Asset : P ff
class ayo { class Mult : Payoff {

Payoff *x ;

tring alias ;
strihg Tas Payoff *x , *y ;

. Pay (Payoff *x, Time t)
tual Real at(Path*
virtual Real at(Pa p) virtual Real at(Path* p) | : Payoff(t), x (x) {}

return p->asset (return

Z?ijzv??lonTlme_, x ->at(p) * y _->at(p); virtual Real at(Path* p) {
} -7 } return x_->at(p);
v }i }
’ }i

Some consequences
» The payoff only needs to know a path to calculate its value via at (.) method

» If we want S(T;) and S(T,) then we need two payoffs, e.g. Asset (T1, "S") and Asset (T2, "S")

} Once we have a set of elementary payoffs we may combine them to create complex derivative payoffs
diine

© d-fine — All rights reserved | 7

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

The big picture...

Pricer

NPV(sim,payoff)

StochProcess :
. . Path i
numeraire(t, X) MCSimulation | Payoff
o «|numeraire(t, PR
zeroBond(t,.T,X) 1.1 0.-"simulate() t.10. 2eroB ndgc'l)' 0.* + 0."discountedAt()
asset(t,X,alias) ath(id) eroBond(t,T) :
evolve(...) P asset(t,alias) at()
Asset
MultiAssetBSModel
Mult
QuasiGaussianModel
Pay

} The chosen architecture allows flexibly addiing new models and payoffs.

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations © d-fine — All rights reserved | 8

Another example to illustrate the usage of payoffs...

Today 10.10.2017

YCF-DOM 2.00% 0002f#0001 EndTerm lylm Description Payoff-Object

DIV-S1 3.00% 0002c#0001 Tenor ‘ Im S1 obj_0003b#0011

DIV-S2 4.00% 0002e#0001 Schedule 0bj_00030#0001) obj_0003c#0000
Npaths 1000 S1-S2 obj_0003d#0004

VTSF-51 20.00% 00033#0001 Seed ! 0 obj_0003e#0006

VTSF-52 30.00% 0002a#0002 RichEx FALSE [51-s2]"+ obj_0003f#0004
Timelnterp TRUE Pay obj_00040#0010

|Corr 100% 30% Store.Browrtlans ‘ FALSE

30% 100% MC Simulation obj_00038#0005 NPV 0.121

Simulate TRUE

Spot-S1 (norm.) 1.00 DoAdjus.t TRUE

Spot-S2 (norm.) 1.00 AssetAdjuster TRUE

BS-S1 s1 00034#0001

BS-S1 Y) 0003640002

|Model obj_00037#0005

} Though flexible in principle, assembling the payoff objects manually might be cumbersome.

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

© d-fine — All rights reserved | 9

A Flex/Bison-based Parser for a Bespoke Scripting Language

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 10

Our scripting language consists of a list of assignments which create/modify a

map of payoffs

Key Value
.S fix" FixedAmount(100.0)
S Asset(0.25,“SPX")

pay

amt

rec

Pay (

(S / s fix - 1.0) * 0.25

Pay (

1.75%

amt,

* 0.25, 01Feb2018)

01lFeb2018)

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

© d-fine — All rights reserved | 11

Our scripting language consists of a list of assignments which create/modify a
map of payoffs

o\°

*10.25, |[01Feb2018 |)

pay = Pay(|1.75

Key Value , ,
FixedAmount FixedAmount] Dat
.S fix" FixedAmount(100.0
_ ()
S Asset(0.25,“SPX")
pay [-] Pay
rec [Identifier |ldentifier [FixedAmount |[FixedAmount

Subtraction

Once the script is parsed the

rec = Pay(amt, 01Feb2018]|)

4

via their keys -
Pay

resulting payoffs are accessible

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 12

How do we get from the text input to a QuantLib payoff object?

® . . .
c » Define the set of terminal symbols (alphabet, list of tokens) of the language
=
@
ﬁ » Use GNU Flex to generate a scanner for the text input
» Define the grammar of the scripting language
g » Use GNU Bison to generate a parser
g » Utilise the Flex scanner to identify valid tokens in text input
> Creates an abstract syntax tree for a given text input
% » Iterate recursively through abstract syntax tree
§- » Generate QuantLib payoff objects
)
e » Store a reference to final payoff in payoff scripting map

The interface between Scanner/Parser and QuantLib is the abstract syntax tree (AST). In principle, the
AST could be generated by other tools as well.

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 13

Input scanning is implemented via GNU Flex

» Open source implementation of Lex (standard lexical analyzer on many Unix systems)

» Generates C/C++ source code which provides a function yylex (.) which returns the next token

Token definitions
» QOperators and punctuations
+, =, %, /, ==, =, <=, >=, <, >, &&, ||, (), = ","

» Pre-defined function key-words

Pay, Min, Max, IfThenElse, Cache
» |dentifier

[a-zA-Z] [a-zA-Z 0-9]~*

» Decimal number (double)

[0-9]1*\.?2[0=-9]+ ([eE] [-+]2[0-9]+)7
» Date (poor man’s defintion which needs semantic checking during interpretation phase)

[0-9] {2} (Jan|Feb|Mar |Apr |May|Jun|Jul |Aug|Sep|Oct |Nov|Dec) [0-9] {4}

} Due to automated scanner generation via Flex improvements and extensions are easily incorporated

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 14

Parse tree generation is implemented via GNU Bison

» Open source implementation of a Lookahead-LR (LALR) parser

» Generates C++ source code with class Parser and method parse (.) that fascilitates parsing algorithm

Grammar rules (in BNF-style notation)
» Avalid string consists of an assignment
assignment: IDENTIFIER "=" exp

» An expression represents a payoff which may be composed of tokens and other expressions, e.g.

Rule Parse Tree Payoff Interpretation
exp: exp "+" exp create Add-expression create Add-payoff
| "(" exp ")" pass on expression pass on payoff in expression
| IDENTIFIER create ldentifier-expression lookup payoff in payoff map
| NUMBER create Number-expression create fixed amount payoff
| PAY " (" NUMBER ")" create Pay-expression create Pay-payoff based on year fraction
| PAY " (" DATE ")" create Pay-expression create Pay-payoff based on date

} Due to automated parser generation via Bison improvements and extensions are easily incorporated

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 15

Payoffs may also be used as functions within payoff script

» Derivative payoffs often refere to the same underlying at various dates, e.g.
» Asset value at various barrier observation dates S(T;), ..., S(T},)
» Libor rate at various fixing dates L(Ty), ..., L(T},)

» We allow cloning payoffs with modified observation date

Key Value class Asset : Payoff {
.S | Asset(0.0,“SPX¥) string alias_;
Asset (Time t, string alias)
Payoff(t), alias (alias){ }
S(01Nov2017) — 1.0) * 0.25 return new Asset (t,alias);
}
rec = Pay(amt, 01Feb2018) bi

Eventhough S(.) looks like a function in the script, by means of the parser S(T1) and S(T2) are just two
new payoff objects in QuantLib

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language © d-fine — All rights reserved | 16

Some Scripting Examples

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples © d-fine — All rights reserved | 17

A ,Phoenix Autocall” Structured Equity Note

Example
» Structured 1y note with conditional quarterly coupons and redemption

Underlying
» Worst-of basket consisting of two assets ,S1“ and ,S2°
» For briefty initial asset values are normalised to S;(0) = S,(0) = 1.0

Coupon
» Pay 2% if basket is above 60% at coupon date
» Also pay previous un-paid coupons if basket is above 60% (memory feature)

Autocall
» If basket is above 100% at coupon date terminate the structure
» Pay early redemption amount of 101%

Final Redemption
» If not autocalled pay 100% - DIPut, DIPut with strike at 100% and in-barrier at 60%
» Redemption floored at 30%

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples © d-fine — All rights reserved | 18

A Euribor-linked annuity loan

Example

» Variable maturity loan paying quarterly installments

Installments

» Pay a fixed amount on a quarterly basis

Interest and Redemption Payments
» Interest portion of installment is Libor-3m + 100bp on outstanding notional

» Use remaining installment amount to redeem notional

Maturity

» Loan is matured once notional is fully redeemed

Recursion for Payed Installments and Outstanding Balance

Accruad interest Int; =[L; +s]-6;-B;
Payed installment Pay; = min{B; + Int;, Installment} = min{[1 + (L; + s) - 6;] - B;, Installment}
New Balance B;,1 = B; — Pay;

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples © d-fine — All rights reserved | 19

Summary

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Summary © d-fine — All rights reserved | 20

Summary and Conclusions

Summary

»

»

»

Flexible payoff scripting requires a clear separation of models, simulations, paths and payoffs
Payoffs may easily be generated from a small set of interface functions

Payoff scripting can be efficiently implemented via scanner/parser generators (e.g. Flex/Bison)

Further Features (not discussed but partly implemented already)

»

»

»

»

»

CMS (i.e. swap rate) payoff

Continuous barrier monitoring

Regression-based Min-/Max-payoff for American Monte Carlo
Handling payoffs in the past (with already fixed values)

Multi-currency hybrid modelling; attaching aliases to ZCB‘s and Euribor payoffs?

} Payoff scripting in QuantLib provides a tool box for lots of fun analysis

dTine

2017-11-30 | Structured Payoff Scripting in QuantLib | Summary © d-fine — All rights reserved | 21

Dr Sebastian Schlenkrich d-fine
Senior Manager Frankfurt
Tel +49 89 7908617-355 Miinchen
Mobile +49 162 2631525 London
E-Mail Sebastian.Schlenkrich@d-fine.de Wien

Zlrich
Artur Steiner
Partner
Tel +49 89 7908617-288 Zentrale
Mobile +49 151 14819322 d-fine GmbH
E-Mail Artur.Steiner@d-fine.de An der Hauptwache 7

D-60313 Frankfurt/Main

Tel +49 69 90737-0
Fax +49 69 90737-200

www.d-fine.com

dTine

© d-fine — All rights reserved | 22

dTine

