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Why do we want a payoff scripting language? Let’s start with a teaser
example...
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3 L Libor-MC#0008
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5 Script
6 RA=0
7 RA =RA+(L(100ct2018) >0.01 ) *( L(100ct2018) <0.03)
3 RA=RA+({L{110ct2018) >0.01) *( L(110ct2018) <0.03)
29 RA =RA + ( L(09Nov2018) >0.01 ) * ( L{09Nov2018) < 0.03 )

30 RA=RA+(L(12Nov2018)>0.01) * ( L(12Nov2018) <0.03 )
31 CF=RA/24 * ( L(12Nov2018) + 0.005 ) *31/360
32 payoff = Pay( CF, 12Nov2018)
33
34 Script obj_00021#0001
35 NPV 0.14%
36 Effective Col 1.69%
37

} Payoff scripting provides great flexibility to the user and quick turnaround for ad-hoc analysis
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Agenda

» Payoffs, Paths and Simulations

» A Flex/Bison-based Parser for a Bespoke Scripting Language

» Some Scripting Examples

»  Summary
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Payoffs, Paths and Simulations
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A path is an abstract representation of the evolution of the world in time

General Path
p:[0,+0) - RN

Alternatives/specialisations:

» 1-factor modells on discrete observation
dates

p = [po, ..., pu]l € RM

» 1-factor model for European payoffs
Pp=poER

Payoff allows calculating a scalar quantity for a particular evolution (or realisation) of the world
Vip-R

} We consider general (abstract) paths and payoffs as functions mapping a path to a scalar quantity
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Why does it have to be that abstract?

Assume p = [py, ..., py] € R then a payoff is a functional V: R® - R
» In C++ this may just be any function with the signature double payoff (vector<double> p)

» Example European call option

double call (vector<double> p) {
double strike = /* obtained from script context */
return max (p.back()-strike,0);

}
» Such functions could be created dynamically, e.g. via C++ integration of other languages®, e.g.

> JNI + Scala for scripting in Scala

> RiInside for scripting in R

But what if the model and thus the interpretation of p changes?
» Model A: p; = S(t;) (direct asset modelling)
» Model B: p; = log(5(t;)) (log-asset modelling)

The payoff should not know what kind of the path is. Instead the payoff should only use a pre-defined
interface to derive its value
(1) for details see e.g. hpcquantlib.wordpress.com/2011/09/01/using-scala-for-payoff-scripting/ dfine
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Less is more —
What do we really need to know from a path to price a derivative?

E.g. V(T) = [$,(T) = Sy(D)I* class Farh
(Equity) underlying asset values S;(-) and S,(-) at StochProcess™ process_;
Spre_ad MCSimulation* sim ;
Option expiry observation time T size_t idx_;
Path (...) { ... }
+ .
V(T) = [L(Tfix» Ty, Tz) - K] with Real asset( Time obsTime,
_ string alias ) {
L(Tfix»Tl»Tz) — M 1o — 1 State* s = sim ->state(idx , obsTime);
E.g. Interest P(Tfix, T3) T,—T, return process ->asset (obsTime,
Rate Caplet s, alias);
zero bonds P(:,-) for observation time Ty, }
) ] real zeroBond( Time t, Time T ) {
and maturity times Ty, T, () State* s = sim ->state(idx , t);
return process ->zeroBond(t, T, s);
}
— . . real numeraire( Time obsTime ) {
V(t) N(t) [E[V( )/N(T)] State* s = sim ->state(idx , obsTime);
Discounting numeraire price N(-) at payment return process ->numeraire (obsTime, s);
}
observation time T };

The path only knows how to derive a state of the world at observation time and delegates calculation to the
underlying stochastic process (or model)
(1) plus deterministic spread discount factor D, to account for tenor basis dfine
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With the generic path definition the payoff specification becomes very easy

class Payoff {
Time observationTime ;

virtual Real at(Path* p) = 0;
virtual Real discountedAt (Path* p) { return at(p) / p->numeraire (observationTime ); }

}s

class Pay : Payoff ({

1 Asset : P ff
class ayo { class Mult : Payoff {

Payoff *x ;

tring alias ;
strihg Tas Payoff *x , *y ;

. Pay (Payoff *x, Time t)
tual Real at(Path*
virtual Real at(Pa p) virtual Real at(Path* p) | : Payoff(t), x (x) {}

return p->asset ( return

Z?ijzv??lonTlme_, x ->at(p) * y _->at(p); virtual Real at(Path* p) {
} -7 } return x_->at(p);
v }i }
’ }i

Some consequences
» The payoff only needs to know a path to calculate its value via at (.) method

» If we want S(T;) and S(T,) then we need two payoffs, e.g. Asset (T1, "S") and Asset (T2, "S")

} Once we have a set of elementary payoffs we may combine them to create complex derivative payoffs
diine
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The big picture...

Pricer

NPV(sim,payoff)

StochProcess :
. . Path i
numeraire(t, X) MCSimulation | Payoff
o «|numeraire(t, PR
zeroBond(t,.T,X) 1.1 0.-"simulate() t.10. 2eroB ndgc'l)' 0.* + 0."discountedAt()
asset(t,X,alias) ath(id) eroBond(t,T) :
evolve(...) P asset(t,alias) at()
Asset
MultiAssetBSModel
Mult
QuasiGaussianModel
Pay

} The chosen architecture allows flexibly addiing new models and payoffs.
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Another example to illustrate the usage of payoffs...

Today 10.10.2017

YCF-DOM 2.00% 0002f#0001 EndTerm lylm Description Payoff-Object

DIV-S1 3.00% 0002c#0001 Tenor ‘ Im S1 obj_0003b#0011

DIV-S2 4.00% 0002e#0001 Schedule 0bj_00030#0001 ) obj_0003c#0000
Npaths 1000 S1-S2 obj_0003d#0004

VTSF-51 20.00% 00033#0001 Seed ! 0 obj_0003e#0006

VTSF-52 30.00% 0002a#0002 RichEx FALSE [51-s2]"+ obj_0003f#0004
Timelnterp TRUE Pay obj_00040#0010

|Corr 100% 30% Store.Browrtlans ‘ FALSE

30% 100% MC Simulation obj_00038#0005 NPV 0.121

Simulate TRUE

Spot-S1 (norm.) 1.00 DoAdjus.t TRUE

Spot-S2 (norm.) 1.00 AssetAdjuster TRUE

BS-S1 s1 00034#0001

BS-S1 Y) 0003640002

|Model obj_00037#0005

} Though flexible in principle, assembling the payoff objects manually might be cumbersome.
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A Flex/Bison-based Parser for a Bespoke Scripting Language
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Our scripting language consists of a list of assignments which create/modify a

map of payoffs

Key Value
.S fix" FixedAmount(100.0)
S Asset(0.25,“SPX")

pay

amt

rec

Pay (

(S / s fix - 1.0 ) * 0.25

Pay (

1.75%

amt,

* 0.25, 01Feb2018 )

01lFeb2018 )
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Our scripting language consists of a list of assignments which create/modify a
map of payoffs

o\°

*10.25, |[01Feb2018 |)

pay = Pay(|1.75

Key Value , ,
FixedAmount FixedAmount] Dat
.S fix" FixedAmount(100.0
_ ( )
S Asset(0.25,“SPX")
pay [-] Pay
rec [ Identifier |ldentifier  [FixedAmount  |[FixedAmount

Subtraction

Once the script is parsed the

rec = Pay( amt, 01Feb2018]|)

4

via their keys -
Pay

resulting payoffs are accessible

dTine
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How do we get from the text input to a QuantLib payoff object?

® . . .
c » Define the set of terminal symbols (alphabet, list of tokens) of the language
=
@
ﬁ » Use GNU Flex to generate a scanner for the text input
» Define the grammar of the scripting language
g » Use GNU Bison to generate a parser
g »  Utilise the Flex scanner to identify valid tokens in text input
> Creates an abstract syntax tree for a given text input
% » Iterate recursively through abstract syntax tree
§- » Generate QuantLib payoff objects
)
e » Store a reference to final payoff in payoff scripting map

The interface between Scanner/Parser and QuantLib is the abstract syntax tree (AST). In principle, the
AST could be generated by other tools as well.

dTine
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Input scanning is implemented via GNU Flex

» Open source implementation of Lex (standard lexical analyzer on many Unix systems)

» Generates C/C++ source code which provides a function yylex (.) which returns the next token

Token definitions
» QOperators and punctuations
+, =, %, /, ==, =, <=, >=, <, >, &&, ||, (), = ","

» Pre-defined function key-words

Pay, Min, Max, IfThenElse, Cache
»  |dentifier

[a-zA-Z] [a-zA-Z 0-9]~*

» Decimal number (double)

[0-9]1*\.?2[0=-9]+ ([eE] [-+]2[0-9]+)7
» Date (poor man’s defintion which needs semantic checking during interpretation phase)

[0-9] {2} (Jan|Feb|Mar |Apr |May|Jun|Jul |Aug|Sep|Oct |Nov|Dec) [0-9] {4}

} Due to automated scanner generation via Flex improvements and extensions are easily incorporated
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Parse tree generation is implemented via GNU Bison

» Open source implementation of a Lookahead-LR (LALR) parser

» Generates C++ source code with class Parser and method parse (.) that fascilitates parsing algorithm

Grammar rules (in BNF-style notation)
» Avalid string consists of an assignment
assignment: IDENTIFIER "=" exp

» An expression represents a payoff which may be composed of tokens and other expressions, e.g.

Rule Parse Tree Payoff Interpretation
exp: exp "+" exp create Add-expression create Add-payoff
| "(" exp ")" pass on expression pass on payoff in expression
| IDENTIFIER create ldentifier-expression  lookup payoff in payoff map
| NUMBER create Number-expression create fixed amount payoff
| PAY " (" NUMBER ")" create Pay-expression create Pay-payoff based on year fraction
| PAY " (" DATE ")" create Pay-expression create Pay-payoff based on date

} Due to automated parser generation via Bison improvements and extensions are easily incorporated
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Payoffs may also be used as functions within payoff script

» Derivative payoffs often refere to the same underlying at various dates, e.g.
» Asset value at various barrier observation dates S(T;), ..., S(T},)
» Libor rate at various fixing dates L(Ty), ..., L(T},)

» We allow cloning payoffs with modified observation date

Key Value class Asset : Payoff {
.S | Asset(0.0,“SPX¥) string alias_;
Asset (Time t, string alias)
Payoff(t), alias (alias){ }
S( 01Nov2017 ) — 1.0 ) * 0.25 return new Asset (t,alias );
}
rec = Pay( amt, 01Feb2018 ) bi

Eventhough S(.) looks like a function in the script, by means of the parser S(T1) and S(T2) are just two
new payoff objects in QuantLib

dTine
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Some Scripting Examples
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A ,Phoenix Autocall” Structured Equity Note

Example
»  Structured 1y note with conditional quarterly coupons and redemption

Underlying
» Worst-of basket consisting of two assets ,S1“ and ,S2°
»  For briefty initial asset values are normalised to S;(0) = S,(0) = 1.0

Coupon
» Pay 2% if basket is above 60% at coupon date
» Also pay previous un-paid coupons if basket is above 60% (memory feature)

Autocall
» If basket is above 100% at coupon date terminate the structure
» Pay early redemption amount of 101%

Final Redemption
» If not autocalled pay 100% - DIPut, DIPut with strike at 100% and in-barrier at 60%
» Redemption floored at 30%

dTine
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A Euribor-linked annuity loan

Example

» Variable maturity loan paying quarterly installments

Installments

» Pay a fixed amount on a quarterly basis

Interest and Redemption Payments
» Interest portion of installment is Libor-3m + 100bp on outstanding notional

» Use remaining installment amount to redeem notional

Maturity

» Loan is matured once notional is fully redeemed

Recursion for Payed Installments and Outstanding Balance

Accruad interest Int; =[L; +s]-6;-B;
Payed installment Pay; = min{B; + Int;, Installment} = min{[1 + (L; + s) - 6;] - B;, Installment}
New Balance B;,1 = B; — Pay;
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Summary
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Summary and Conclusions

Summary

»

»

»

Flexible payoff scripting requires a clear separation of models, simulations, paths and payoffs
Payoffs may easily be generated from a small set of interface functions

Payoff scripting can be efficiently implemented via scanner/parser generators (e.g. Flex/Bison)

Further Features (not discussed but partly implemented already)

»

»

»

»

»

CMS (i.e. swap rate) payoff

Continuous barrier monitoring

Regression-based Min-/Max-payoff for American Monte Carlo
Handling payoffs in the past (with already fixed values)

Multi-currency hybrid modelling; attaching aliases to ZCB‘s and Euribor payoffs?

} Payoff scripting in QuantLib provides a tool box for lots of fun analysis
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