
 © d-fine — All rights reserved © d-fine — All rights reserved | 0

Structured Payoff Scripting in QuantLib

Dr Sebastian Schlenkrich

Dusseldorf, November 30, 2017

 © d-fine — All rights reserved © d-fine — All rights reserved | 1

Why do we want a payoff scripting language? Let’s start with a teaser

example…

Payoff scripting provides great flexibility to the user and quick turnaround for ad-hoc analysis

2017-11-30 | Structured Payoff Scripting in QuantLib

 © d-fine — All rights reserved © d-fine — All rights reserved | 2

Agenda

» Payoffs, Paths and Simulations

» A Flex/Bison-based Parser for a Bespoke Scripting Language

» Some Scripting Examples

» Summary

2017-11-30 | Structured Payoff Scripting in QuantLib

 © d-fine — All rights reserved © d-fine — All rights reserved | 3

Payoffs, Paths and Simulations

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 4

A path is an abstract representation of the evolution of the world in time

General Path

𝑝: 0,+∞ → ℝ𝑁

Alternatives/specialisations:

» 1-factor modells on discrete observation

dates

𝑝 = 𝑝0, … , 𝑝𝑀 ∈ ℝ𝑀

» 1-factor model for European payoffs

𝑝 = 𝑝0 ∈ ℝ

Payoff allows calculating a scalar quantity for a particular evolution (or realisation) of the world

𝑉: 𝑝 ↦ ℝ

We consider general (abstract) paths and payoffs as functions mapping a path to a scalar quantity

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 5

Why does it have to be that abstract?

(1) for details see e.g. hpcquantlib.wordpress.com/2011/09/01/using-scala-for-payoff-scripting/

Assume 𝑝 = 𝑝0, … , 𝑝𝑀 ∈ ℝ𝑀 then a payoff is a functional 𝑉:ℝ𝑀 → ℝ

» In C++ this may just be any function with the signature double payoff(vector<double> p)

» Example European call option

double call(vector<double> p) {

 double strike = /* obtained from script context */

 return max(p.back()-strike,0);

}

» Such functions could be created dynamically, e.g. via C++ integration of other languages(1), e.g.

› JNI + Scala for scripting in Scala

› RInside for scripting in R

But what if the model and thus the interpretation of 𝒑 changes?

» Model A: 𝑝𝑖 = 𝑆(𝑡𝑖) (direct asset modelling)

» Model B: 𝑝𝑖 = log 𝑆(𝑡𝑖) (log-asset modelling)

The payoff should not know what kind of the path is. Instead the payoff should only use a pre-defined

interface to derive its value

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 6

Less is more –

What do we really need to know from a path to price a derivative?

(1) plus deterministic spread discount factor 𝐷12 to account for tenor basis

E.g.

(Equity)

Spread

Option

𝑉 𝑇 = 𝑆1 𝑇 − 𝑆2 𝑇 +

underlying asset values 𝑆1 ⋅ and 𝑆2 ⋅ at

expiry observation time 𝑇

E.g. Interest

Rate Caplet

𝑉 𝑇 = 𝐿 𝑇𝑓𝑖𝑥, 𝑇1, 𝑇2 − 𝐾
+
 with

𝐿 𝑇𝑓𝑖𝑥, 𝑇1, 𝑇2 =
𝑃(𝑇𝑓𝑖𝑥, 𝑇1)

𝑃(𝑇𝑓𝑖𝑥, 𝑇2)
𝐷12 − 1

1

𝑇2 − 𝑇1

zero bonds 𝑃(⋅,⋅) for observation time 𝑇𝑓𝑖𝑥

and maturity times 𝑇1, 𝑇2 (1)

Discounting

𝑉 𝑡 = 𝑁 𝑡 ⋅ 𝔼 𝑉(⋅)/𝑁(𝑇)

numeraire price 𝑁(⋅) at payment

observation time 𝑇

class Path {

 StochProcess* process_;

 MCSimulation* sim_;

 size_t idx_;

 Path (...) { ... }

 Real asset(Time obsTime,

 string alias) {

 State* s = sim_->state(idx_, obsTime);

 return process_->asset(obsTime,

 s, alias);

 }

 real zeroBond(Time t, Time T) {

 State* s = sim_->state(idx_, t);

 return process_->zeroBond(t, T, s);

 }

 real numeraire(Time obsTime) {

 State* s = sim_->state(idx_, obsTime);

 return process_->numeraire(obsTime, s);

 }

};

The path only knows how to derive a state of the world at observation time and delegates calculation to the

underlying stochastic process (or model)

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 7

With the generic path definition the payoff specification becomes very easy

class Payoff {

 Time observationTime_;

 virtual Real at(Path* p) = 0;

 virtual Real discountedAt(Path* p) { return at(p) / p->numeraire(observationTime_); }

};

class Asset : Payoff {

 string alias_;

 virtual Real at(Path* p) {

 return p->asset(

 observationTime_,

 alias_);

 }

};

class Mult : Payoff {

 Payoff *x_, *y_;

 virtual Real at(Path* p) {

 return

 x_->at(p) * y_->at(p);

 }

};

class Pay : Payoff {

 Payoff *x_;

 Pay(Payoff *x, Time t)

 : Payoff(t), x_(x) {}

 virtual Real at(Path* p) {

 return x_->at(p);

 }

};

Some consequences

» The payoff only needs to know a path to calculate its value via at(.) method

» If we want 𝑆(𝑇1) and 𝑆(𝑇2) then we need two payoffs, e.g. Asset(T1, "S") and Asset(T2, "S")

Once we have a set of elementary payoffs we may combine them to create complex derivative payoffs

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 8

The big picture…

StochProcess

numeraire(t, X)

zeroBond(t,T,X)

asset(t,X,alias)

evolve(…)

MCSimulation

simulate()

path(idx)

Path

numeraire(t,)

zeroBond(t,T)

asset(t,alias)

Payoff

discountedAt()

at()

1..1 0..*

MultiAssetBSModel

QuasiGaussianModel

1..1 0..* 0..* 0..*

Pricer

NPV(sim,payoff)

Asset

Mult

Pay

…

The chosen architecture allows flexibly addiing new models and payoffs.

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 9

Another example to illustrate the usage of payoffs…

Though flexible in principle, assembling the payoff objects manually might be cumbersome.

Today 10.10.2017

YCF-DOM 2.00%obj_0002f#0001

DIV-S1 3.00%obj_0002c#0001

DIV-S2 4.00%obj_0002e#0001

VTSF-S1 20.00%obj_00033#0001

VTSF-S2 30.00%obj_0002a#0002

Corr 100% 30%

30% 100%

Spot-S1 (norm.) 1.00

Spot-S2 (norm.) 1.00

BS-S1 S1 obj_00034#0001

BS-S1 S2 obj_00036#0002

Model obj_00037#0005

EndTerm 1y1m

Tenor 1m

Schedule obj_00030#0001

Npaths 1000

Seed 1

RichEx FALSE

TimeInterp TRUE

StoreBrownians FALSE

MC Simulation obj_00038#0005

Simulate TRUE

DoAdjust TRUE

AssetAdjuster TRUE

Description Payoff-Object

S1 obj_0003b#0011

S2 obj_0003c#0000

S1 - S2 obj_0003d#0004

0 obj_0003e#0006

[S1 - S2]^+ obj_0003f#0004

Pay obj_00040#0010

NPV 0.121

2017-11-30 | Structured Payoff Scripting in QuantLib | Payoffs, Paths and Simulations

 © d-fine — All rights reserved © d-fine — All rights reserved | 10

A Flex/Bison-based Parser for a Bespoke Scripting Language

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 11

Our scripting language consists of a list of assignments which create/modify a

map of payoffs

Key Value

„S_fix“ FixedAmount(100.0)

„S“ Asset(0.25,“SPX“)

pay = Pay(1.75% * 0.25, 01Feb2018)

amt = (S / S_fix – 1.0) * 0.25

rec = Pay(amt, 01Feb2018)

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 12

Our scripting language consists of a list of assignments which create/modify a

map of payoffs

Key Value

„S_fix“ FixedAmount(100.0)

„S“ Asset(0.25,“SPX“)

pay [.]

amt [.]

rec [.]

pay = Pay(1.75% * 0.25, 01Feb2018)

amt = (S / S_fix – 1.0) * 0.25

rec = Pay(amt, 01Feb2018)

FixedAmount FixedAmount

Mult

Date

Pay

FixedAmount FixedAmount Identifier Identifier

Division

Subtraction

Mult

Identifier Date

Pay

Once the script is parsed the

resulting payoffs are accessible

via their keys

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 13

How do we get from the text input to a QuantLib payoff object?

S
c
a
n

n
e
r

» Define the set of terminal symbols (alphabet, list of tokens) of the language

» Use GNU Flex to generate a scanner for the text input

P
a
rs

e
r

» Define the grammar of the scripting language

» Use GNU Bison to generate a parser

› Utilise the Flex scanner to identify valid tokens in text input

› Creates an abstract syntax tree for a given text input

In
te

rp
re

te
r

» Iterate recursively through abstract syntax tree

» Generate QuantLib payoff objects

» Store a reference to final payoff in payoff scripting map

The interface between Scanner/Parser and QuantLib is the abstract syntax tree (AST). In principle, the

AST could be generated by other tools as well.

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 14

Input scanning is implemented via GNU Flex

» Open source implementation of Lex (standard lexical analyzer on many Unix systems)

» Generates C/C++ source code which provides a function yylex(.) which returns the next token

Token definitions

» Operators and punctuations

+, -, *, /, ==, !=, <=, >=, <, >, &&, ||, (,), =, ","

» Pre-defined function key-words

Pay, Min, Max, IfThenElse, Cache

» Identifier

[a-zA-Z][a-zA-Z_0-9]*

» Decimal number (double)

[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?

» Date (poor man’s defintion which needs semantic checking during interpretation phase)

[0-9]{2}(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[0-9]{4}

Due to automated scanner generation via Flex improvements and extensions are easily incorporated

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 15

Parse tree generation is implemented via GNU Bison

» Open source implementation of a Lookahead-LR (LALR) parser

» Generates C++ source code with class Parser and method parse(.) that fascilitates parsing algorithm

Grammar rules (in BNF-style notation)

» A valid string consists of an assignment

assignment: IDENTIFIER "=" exp

» An expression represents a payoff which may be composed of tokens and other expressions, e.g.

 Rule Parse Tree Payoff Interpretation

exp: exp "+" exp create Add-expression create Add-payoff

 | "(" exp ")" pass on expression pass on payoff in expression

 | IDENTIFIER create Identifier-expression lookup payoff in payoff map

 | NUMBER create Number-expression create fixed amount payoff

 | PAY "(" NUMBER ")" create Pay-expression create Pay-payoff based on year fraction

 | PAY "(" DATE ")" create Pay-expression create Pay-payoff based on date

Due to automated parser generation via Bison improvements and extensions are easily incorporated

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 16

Payoffs may also be used as functions within payoff script

» Derivative payoffs often refere to the same underlying at various dates, e.g.

» Asset value at various barrier observation dates 𝑆 𝑇1 , … , 𝑆(𝑇𝑛)

» Libor rate at various fixing dates 𝐿 𝑇1 , … , 𝐿(𝑇𝑛)

» We allow cloning payoffs with modified observation date

class Asset : Payoff {

 string alias_;

 Asset(Time t, string alias)

 : Payoff(t), alias_(alias){ }

 virtual Asset* at(Time t) {

 return new Asset(t,alias_);

 }

};

Key Value

„S“ Asset(0.0,“SPX“)

amt = (S(01Feb2018) /

 S(01Nov2017) – 1.0) * 0.25

rec = Pay(amt, 01Feb2018)

Eventhough S(.) looks like a function in the script, by means of the parser S(T1) and S(T2) are just two

new payoff objects in QuantLib

2017-11-30 | Structured Payoff Scripting in QuantLib | A Flex/Bison-based Parser for a Bespoke Scripting Language

 © d-fine — All rights reserved © d-fine — All rights reserved | 17

Some Scripting Examples

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples

 © d-fine — All rights reserved © d-fine — All rights reserved | 18

A „Phoenix Autocall“ Structured Equity Note

Example

» Structured 1y note with conditional quarterly coupons and redemption

Underlying

» Worst-of basket consisting of two assets „S1“ and „S2“

» For briefty initial asset values are normalised to 𝑆1 0 = 𝑆2 0 = 1.0

Coupon

» Pay 2% if basket is above 60% at coupon date

» Also pay previous un-paid coupons if basket is above 60% (memory feature)

Autocall

» If basket is above 100% at coupon date terminate the structure

» Pay early redemption amount of 101%

Final Redemption

» If not autocalled pay 100% - DIPut, DIPut with strike at 100% and in-barrier at 60%

» Redemption floored at 30%

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples

 © d-fine — All rights reserved © d-fine — All rights reserved | 19

A Euribor-linked annuity loan

Example

» Variable maturity loan paying quarterly installments

Installments

» Pay a fixed amount on a quarterly basis

Interest and Redemption Payments

» Interest portion of installment is Libor-3m + 100bp on outstanding notional

» Use remaining installment amount to redeem notional

Maturity

» Loan is matured once notional is fully redeemed

Recursion for Payed Installments and Outstanding Balance

Accruad interest 𝐼𝑛𝑡𝑖 = 𝐿𝑖 + 𝑠 ⋅ 𝛿𝑖 ⋅ 𝐵𝑖

Payed installment 𝑃𝑎𝑦𝑖 = min 𝐵𝑖 + 𝐼𝑛𝑡𝑖 , 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡 = min 1 + 𝐿𝑖 + 𝑠 ⋅ 𝛿𝑖 ⋅ 𝐵𝑖 , 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡

New Balance 𝐵𝑖+1 = 𝐵𝑖 − 𝑃𝑎𝑦𝑖

2017-11-30 | Structured Payoff Scripting in QuantLib | Some Scripting Examples

 © d-fine — All rights reserved © d-fine — All rights reserved | 20

Summary

2017-11-30 | Structured Payoff Scripting in QuantLib | Summary

 © d-fine — All rights reserved © d-fine — All rights reserved | 21

Summary and Conclusions

Summary

» Flexible payoff scripting requires a clear separation of models, simulations, paths and payoffs

» Payoffs may easily be generated from a small set of interface functions

» Payoff scripting can be efficiently implemented via scanner/parser generators (e.g. Flex/Bison)

Further Features (not discussed but partly implemented already)

» CMS (i.e. swap rate) payoff

» Continuous barrier monitoring

» Regression-based Min-/Max-payoff for American Monte Carlo

» Handling payoffs in the past (with already fixed values)

» Multi-currency hybrid modelling; attaching aliases to ZCB‘s and Euribor payoffs?

Payoff scripting in QuantLib provides a tool box for lots of fun analysis

2017-11-30 | Structured Payoff Scripting in QuantLib | Summary

 © d-fine — All rights reserved © d-fine — All rights reserved | 22

d-fine

Frankfurt

München

London

Wien

Zürich

Zentrale

d-fine GmbH

An der Hauptwache 7

D-60313 Frankfurt/Main

Tel +49 69 90737-0

Fax +49 69 90737-200

www.d-fine.com

Dr Sebastian Schlenkrich

Senior Manager

Tel +49 89 7908617-355

Mobile +49 162 2631525

E-Mail Sebastian.Schlenkrich@d-fine.de

Artur Steiner

Partner

Tel +49 89 7908617-288

Mobile +49 151 14819322

E-Mail Artur.Steiner@d-fine.de

d-fine

(textbox is required to avoid an issue

where this page gets rotated by 90°

if printing (both “physical” and pdf))

