
 © d-fine — All rights reserved © d-fine — All rights reserved | 0

Igniting QuantLib on a Zeppelin

Andreas Pfadler, d-fine GmbH

QuantLib UserMeeting, Düsseldorf, 7.12.2016

 © d-fine — All rights reserved © d-fine — All rights reserved | 1

» An early stage of this work has been presented at last year’s user meeting

» As there has been a lot of positive encouragement by the audience, development has

continued in the past year:

› Large parts of the code have been rewritten

› Proper build system (Maven) has been implemented

› Code is published on GitHub (Apache License)

› Docker images available

› Integration of Apache Zeppelin

» Please note: This is a personal project of mine. As such, it has been created in my free time.

Neither I nor my employer do provide any sort of guarantees, warranty, support, etc. You are,

however, free to use the source code according to the terms of the Apache License.

Welcome Back!

 © d-fine — All rights reserved © d-fine — All rights reserved | 2

» Short Recap

› Motivation for this talk

› Architectural ingredients

» Live Demo

» Outlook

Agenda

 © d-fine — All rights reserved © d-fine — All rights reserved | 3

» There exist a number of commercial closed source platforms and in-house systems which in

some way combine

› Analytics, i.e. Pricing Libraries, Exposure Engines, …

› Grid computing frameworks

› Grid wide caching / in memory computing

› HTTP/Rest interfaces and HTML5 GUIs

› Excel Integration

› Workflows for product/model development and deployment

» In this talk we show how we can build similar systems using open source software only.

» Our main ingredients are

› QuantLib with Swig Java bindings

› Apache Ignite

› Jetty

› Scala

› AngularJS

› Apache Zeppelin

Motivation

 © d-fine — All rights reserved © d-fine — All rights reserved | 4

Basic Ingredients

 © d-fine — All rights reserved © d-fine — All rights reserved | 5

» Originally developed by Grid Gain Systems

» Recently (2015) promoted to a top level project of the Apache Software Foundation

» Can be thought of as a kind of distributed in memory data fabric.

» Based on Java. Configurable using Spring, sometimes seen as a „competitor“ to Apache

Spark.

Main Features:

Apache Ignite (1)

Distributed

Computing

Cluster Wide In-

Memory Caches

Service

Deployment

Distributed

Datastructures

(Queues, etc.)

Accessible through easy to use high-level APIs

 © d-fine — All rights reserved © d-fine — All rights reserved | 6

» Example 1: distributed closure (see Ignite documentation)

» Example 2: Query grid-wide cache using a predicate (see Ignite Documentation)

Apache Ignite (2)

IgniteCompute compute = ignite.compute();

// Execute closure on all cluster nodes.

Collection<Integer> res = compute.apply(String::length, Arrays.asList("How many characters".split(" ")));

// Add all the word lengths received from cluster nodes.

 int total = res.stream().mapToInt(Integer::intValue).sum();

IgniteCache<Long, Person> cache = ignite.cache("mycache");

// Find only persons earning more than 1,000.

 try (QueryCursor cursor = cache.query(new ScanQuery((k, p) -> p.getSalary() > 1000))

{

 for (Person p : cursor)

 System.out.println(p.toString());

}

 © d-fine — All rights reserved © d-fine — All rights reserved | 7

REST/HTML5 Interface: Jetty and AngularJS

Jetty

» Traditional web apps are deployed as packages on some application server

» If your application is already implemented in some sort of daemon process anyway and you

don‘t want to run a full application server, why not directly embed a http server?

» Standard option in the Java world: Jetty

» Features easy integration (Maven packages) and allows for running servlets or even fully

fledged applications packaged in a .war file.

AngularJS

» Maintained mostly by Google

» Targeted at single page apps based on MVC pattern

» Features custom HTML5 directives and bidirectional data binding

» Makes JS development less painful…

 © d-fine — All rights reserved © d-fine — All rights reserved | 8

QuantLib / JNI / Thread-Safety

» Thread safety: Since we will embed QuantLib through JNI and run several Java threads in

parallel across a number of Ignite nodes, this is of paramount importance.

» Need to make use of Klaus Spanderen‘s implementation of the thread safe observer pattern

(https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/) – already part

of QL since 1.7.

» Have to make sure that we have one session per thread.

Scala Integration

» Nice to have: Generic Scripting facility, e.g. to define payoffs or products

» Also nice to have: Offer users a way to quickly achieve results using an embedded scripting

facility similar to IPython notebooks, etc.

» Thus we integrate a Scala interpreter into our system (although Jython would be equally well

suited…)

» Inspired again by https://hpcquantlib.wordpress.com/2011/09/01/using-scala-for-payoff-

scripting/.

QuantLib and Scala Integration

https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/

 © d-fine — All rights reserved © d-fine — All rights reserved | 9

Apache Zeppelin

» One reason for the recent growth Python‘s popularity consists of course in the famous IPython

notebook. It would be nice to have something similar in our system, especially for rapid

prototyping or ad-Hoc analytics / reports

» This why we connect Apache Zeppelin: It offers a generic web-based,

IPython/Mathematica style notebooks.

» Also: It is shipped with a builtin „Ignite-Interpreter“. This is basically an embedded Scala-

Interpreter with an Ignite context object, that may be used to access all of the grid computing

and grid cache facilities offered by Ignite.

» Moreover, one can also integrate other „Intepreters“, which may for instance be used to query

existing databases or submit jobs to a Spark Cluster.

 © d-fine — All rights reserved © d-fine — All rights reserved | 10

The Big Picture

HTML 5 GUI Master Node

Embedded HTTP

Server

Worker Node Quantlib /

JNI

Worker Node Worker Node

Ignite Cluster Libs Clients

Excel

(though ExcelDna)

Batch programs

Cache

Cache Cache

Cache

http

http

Other

Apache Zeppelin

OpenGam

ma Strata

 © d-fine — All rights reserved © d-fine — All rights reserved | 11

Live Demo

 © d-fine — All rights reserved © d-fine — All rights reserved | 12

A lot remains to be done

» The architecture provides a solid foundation for distributed pricing combined with an easy to

use cluster wide caching mechanism

» However, for concrete applications a lot remains to be inspected closer or worked on in the

future:

› Overall stability and performance / Integration into production environments

› High-Level Market Data API on top of Ignite cache and integration of live market data feeds

› Security considerations

› Flexible and easy to use ways for defining new products and models beyond the simple examples

shown here

› Clear workflows for quantitative development und production deployment

Key Message

» There are great open source projects that help you building sophisticated and easy to use

pricing platforms

» Don‘t start developing from scratch and keep an open mind with regards to what‘s out there in

terms of (not only finance related) open source software

Outlook

 © d-fine — All rights reserved © d-fine — All rights reserved | 13

Source code

» Main source code on github: apfadler/quil-src

» Build requirements:

› JDK 8

› Maven

› QuantlibJNI.dll/.so for QL 1.7. (Talk to me if you need binaries)

› For Windows: git bash or Cygwin shell (the latter has not been tested yet)

Docker images

» apfadler/quantlib-quil-server, apfadler/quantlib-zeppelin on dockerhub

» Simplest way to use them: See apfadler/quil-docker on github.

Code and Docker Images

 © d-fine — All rights reserved © d-fine — All rights reserved | 14

d-fine GmbH

Frankfurt

München

London

Wien

Zürich

Zentrale

d-fine GmbH

Opernplatz 2

D-60313 Frankfurt/Main

Tel +49 69 90737-0

Fax +49 69 90737-200

www.d-fine.com

Dr. Andreas Pfadler

Manager

andreas.pfadler@d-fine.de

Tel +49 (0)69 90737 0

Mobil +49 (0)162 2630029

d-fine

(textbox is required to avoid an issue

where this page gets rotated by 90°

if printing (both “physical” and pdf))

