ORE Applied: Dynamic Initial Margin and MVA

Roland Lichters

QuantLib User Meeting at IKB, Düsseldorf

8 December 2016
Agenda

Open Source Risk Engine

Dynamic Initial Margin and Margin Value Adjustment

Conclusion and Next Steps
Agenda

Open Source Risk Engine

Dynamic Initial Margin and Margin Value Adjustment

Conclusion and Next Steps
Released 7 October 2016

Web site, FAQ, Forum:

http://www.opensourcerisk.org

Code base:

https://github.com/OpenSourceRisk/Engine
https://github.com/OpenSourceRisk/Dashboard
Frequently Asked Questions

General

+ What is Open Source Risk Engine?
+ What is QuantLib?
+ Is there a user guide for ORE?
+ Are there any tutorials for ORE?
+ Is there a technical document describing ORE?
+ What is it written in?
github.com/OpenSourceRisk/Engine

Open Source Risk Engine http://www.opensourcerisk.org

<table>
<thead>
<tr>
<th>Branch</th>
<th>Latest commit</th>
<th>Commit message</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>2951fd3</td>
<td>a day ago</td>
</tr>
</tbody>
</table>

- **App**: Added vc12 to make dist
- **Docs/UserGuide**: Updated docs and makefile fix
- **Examples**: Updated Example_1.xlsm
- **FrontEnd**: Initial commit
- **OREAnalytics**: Makefile and doxygen fixes
- **OREData**: Makefile and doxygen fixes
- **QuantExt**: Makefile and doxygen fixes
- **QuantLib @ fed85cc**: add QuantLib submodule
- **ThirdPartyLibs/rapidxml-1.13**: Initial commit
- **xsd**: Initial commit
Analytics Scope

Portfolio pricing and cash flow projection

Derivative portfolio analytics based on a Monte Carlo simulation framework

- Credit exposure evolution with netting and collateral (EE, EPE, EEPE, PFE) supporting regulatory capital charge calculation under internal model methods
- Collateral modeling with Dynamic Initial Margin (DIM)
- Derivative value adjustments (CVA, DVA, FVA, COLVA, MVA)
- Market risk measures
Roadmap

Analytics:
- SA-CCR, the new standard for derivatives capital
- Sensitivity analysis and stress testing
- Parametric VaR and initial margin methods

Asset classes and simulation models:
- Credit simulation, credit derivatives and loan products
- Default risk modeling and credit portfolio analysis
- Inflation simulation and inflation derivatives
- Equity simulation, equity derivatives
- Commodity simulation, commodity derivatives
Data Flow

Portfolio Loading
“Curve” Building
Model Calibration

\(t_0 \) Pricing
Market Simulation
Forward Pricing

Aggregation
Collateral Modeling
Exposure Analytics

Trade data (xml)
Market data
Configuration (xml)

NPV Report
Cashflow Report

NPV Cube

Exposure Reports
XVA Reports

Net NPV Cube

Interactive Visualisation:
Evolution of Exposure and NPV distributions

Processing
Input
Output

© 2017 Quaternion™ Risk Management Ltd.
Components

- Basic Application/Launchers
- Risk Analytics
- Interfaces and Data Management
- QuantLib
- QL Extension
- Boost Libraries
Agenda

Open Source Risk Engine

Dynamic Initial Margin and Margin Value Adjustment

Conclusion and Next Steps
The introduction of Initial Margin (IM) posting in non-cleared OTC derivatives business reduces residual credit exposures and associated value adjustments, CVA/DVA.

On the other hand, it introduces additional funding cost. The value of the latter is referred to as MVA (Margin Value Adjustment).

To quantify these two effects one needs to model IM under future market scenarios, Dynamic Initial Margin (DIM).
Margin Value Adjustment

Given the state-dependent dynamic initial margin \(DIM(t) \), we can compute the associated MVA in analogy to CVA/DVA:

\[
MVA = \sum_{i=1}^{n} (f_b - s_I) \delta_i S_C(t_i) S_B(t_i) \times \mathbb{E}^N [DIM(t_i) D(t_i)]
\]

with

- borrowing spread \(f_b \) as in FVA calculation
- spread \(s_I \) received on initial margin
- \(S_{B,C}(t) \) cumulative survival probability of the two parties
- \(D(t) \) stochastic discount factor

and both spreads relative to the cash collateral rate.
Consider the netting set values $NPV(t)$ and $NPV(t + \Delta)$ one margin period of risk Δ apart.

Let $F(t, t + \Delta)$ denote cumulative netting set cash flows between time t and $t + \Delta$, converted into the NPV currency.

Let $X(t)$ then denote the *clean* netting set value change during the margin period of risk, i.e. excluding cash flows, in that period:

$$X(t) = NPV(t + \Delta) + F(t, t + \Delta) - NPV(t)$$

ignoring discounting/compounding over the margin period of risk.
DIM via Regression

Task: Find the distribution of $X(t)$ and pick a high (99%) quantile to determine the Initial Margin amount for each time t and conditional on the ‘state of the world’ at time t.

Simplify:

- Estimate the conditional variance of $X(t)$, $V(t) = \mathbb{E}_t[X^2] - \mathbb{E}_t^2[X]$, by regression
- Assume a normal distribution of $X(t)$
- Scale the standard deviation of $X(t)$ to the desired quantile

Which regressors? Which basis functions?
DIM via Regression: Simple Swap

Simple swap pricing, notional 1:

\[
NPV = \sum_{i=1}^{n} c e^{-z t_i} + e^{-z t_n} - 1
\]

\[
\Delta NPV \approx \frac{\partial NPV}{\partial z} \Delta z
\]

\[
\frac{\partial NPV}{\partial z} = - \sum_{i=1}^{n} c t_i e^{-z t_i} - t_n e^{-z t_n}
\]

\[
\frac{\partial NPV}{\partial z} = -D(z) \times (NPV + 1)
\]

with ‘Duration’

\[
D(z) = \frac{\sum_{i=1}^{n} c t_i e^{-z t_i} + t_n e^{-z t_n}}{\sum_{i=1}^{n} c e^{-z t_i} + e^{-z t_n}}
\]

weakly depending on \(z\) (if \(n > 1\)) and when \(z\) is in a realistic range
DIM via Regression: Simple Swap

Variance and Standard Deviation of NPV moves:

$$\mathbb{V}[\Delta NPV] \approx \left(\frac{\partial NPV}{\partial z} \right)^2 \mathbb{V}[\Delta z] = \sigma^2 \Delta t$$

$$\approx D^2 \times (1 + NPV)^2 \times \sigma^2 \Delta t$$

$$= D^2 \times (1 + 2NPV + NPV^2) \times \sigma^2 \Delta t$$

The main z-dependence is in $NPV(z)$
DIM via Regression: Recipe

The Swap example suggests first or second order polynomials as basis functions.

For a single currency Swap, NPV may work as regressor, but we rather use a rate instead, for the following reason:

Extension to multi-currency portfolios (of Swaps) then by
- multi-dimensional regression
- extending the list of regressors to several rates (one for each economy) and relevant FX spot rates
Run Swap DIM/MVA example (Example_13)
Validation: Dynamic Delta-Gamma VaR (ORE+)

Methodology:

- Compute sensitivities (deltas and gammas) under scenarios, analytically during instrument pricing
- Compute model-consistent covariance matrix (in ORE’s evolution model just time-dependent, not scenario-dependent)
- Delta-Normal VaR under scenarios, quantile estimate via simple scaling
- Delta-Gamma VaR under scenarios, quantile estimate using Cornish-Fisher expansion using first four moments
DIM via Regression: EUR Swap

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
DIM via Regression: EUR Swap

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y

![Plot of variance vs regressor with regression line](image-url)
DIM via Regression: EUR Swap

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
DIM via Regression: EUR Swap

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
Dynamic Delta VaR

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
Dynamic Delta Gamma VaR

ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
Evolution of Expected DIM
ATM Vanilla Swap in EUR, 10Y maturity, flat market, regression in 4Y
Evolution of Expected DIM: USD Swap
Vanilla Swap in USD, 10Y maturity
Two Regressors: USD/EUR FX, USD-LIBOR-3M (since NPV in EUR)
Evolution of Expected DIM: USD/EUR CC Swap
Cross Currency EUR/USD Swap, 10Y maturity
3 Regressors: USD/EUR FX, USD-LIBOR-3M, EUR-EURIBOR-3M
Evolution of Expected DIM: European Swaption

European Swaption in EUR, 10Y expiry, physical, 10 year swap

One Regressor: EUR-EURIBOR-3M
DIM Regression: European Swaption
European Swaption in EUR, regression in 4Y (before expiry)
One Regressor: EUR-EURIBOR-3M
DIM Regression: European Swaption
European Swaption in EUR, regression in 12Y (beyond expiry)
One Regressor: EUR-EURIBOR-3M
DIM Regression

Preliminary summary (work in progress):

- ORE supports DIM/MVA via single- and multi-dimensional regression
- Regression DIM validated with Dynamic Delta(-Gamma) VaR in ORE+
- Excellent agreement for single currency and cross currency Swaps with first and second order polynomials as basis functions
- Reasonable agreement for European Swaptions before expiry, second order polynomials better than first order
- Discrepancy from Dynamic Delta VaR increases beyond expiry in case of physical settlement, similar ‘performance’ of first and second order polynomials

SSRN paper to appear shortly with further benchmarking results.
DIM Regression

Preliminary summary (work in progress):

- ORE supports DIM/MVA via single- and multi-dimensional regression
- Regression DIM validated with Dynamic Delta(-Gamma) VaR in ORE+
- Excellent agreement for single currency and cross currency Swaps with first and second order polynomials as basis functions
- Reasonable agreement for European Swaptions before expiry, second order polynomials better than first order
- Discrepancy from Dynamic Delta VaR increases beyond expiry in case of physical settlement, similar ‘performance’ of first and second order polynomials

SSRN paper to appear shortly with further benchmarking results.
Agenda

Open Source Risk Engine

Dynamic Initial Margin and Margin Value Adjustment

Conclusion and Next Steps
ORE is available now, free, open source
Conclusion

ORE is available now, free, open source

ORE provides exposure simulation and almost all XVAs
Conclusion

ORE is available now, free, open source

ORE provides exposure simulation and almost all XVAs

Next: complete asset class coverage, extend the analytics scope
Conclusion

ORE is available now, free, open source

ORE provides exposure simulation and almost all XVAs

Next: complete asset class coverage, extend the analytics scope

Get it, use it, comment on it, add to it
Next Step: Q1 Release

1. Equity products

2. Inflation products

3. Market Risk
 - Sensitivity analysis
 - Stress testing
 - Parametric and Historical Simulation VaR/Expected Shortfall
Thank you
Firm locations and details

Quaternion™ Risk Management is based in four locations:

<table>
<thead>
<tr>
<th>Location</th>
<th>Address Details</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>54 Fitzwilliam Square, Dublin 2, Ireland,</td>
<td>+353 1 678 7922</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>29th floor Canada Square, Canary Wharf, London E14 5DY.</td>
<td>+44 2077121645</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>24th floor World Financial Centre, 200 Vesey Street, NY 10281-1004.</td>
<td>+1 646 952 8799</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Maurenbrecherstrasse 16 47803 Krefeld, Germany.</td>
<td>+49 2151 9284 800</td>
</tr>
</tbody>
</table>

quataternion.com

Quaternion™ is a sponsor of opensourcerisk.org along with Columbia University and Tullet Prebon Information

DISCLAIMER:
This document is presented on the basis of information that is not publicly available. Quaternion™ is not liable for its contents. The presentation is for the named recipient only and is private, confidential and commercially sensitive.