
 © d-fine — All rights reserved © d-fine — All rights reserved | 0

PoC for a modern distributed pricing architecture based on

open source components

Andreas Pfadler, d-fine GmbH

Quantlib Usergroup Meeting, Düsseldorf, 1.12.2015

 © d-fine — All rights reserved © d-fine — All rights reserved | 1

» Motivation for this talk

» Basic ingredients

» Live Demo

» Outlook

Agenda

 © d-fine — All rights reserved © d-fine — All rights reserved | 2

» There exist a number of commercial closed source platforms and in-house systems which in

some way combine

› Analytics, i.e. pricing libraries

› Grid computing frameworks

› Grid wide caching / in memory computing

› HTTP/Rest interfaces and HTML5 GUIs

› Excel integration

› Workflows for product/model development and deployment

» In this talk we show how we can build similar systems using open source software, only.

» Our main ingredients are

› QuantLib with Swig Java bindings

› Apache Ignite

› Jetty

› Scala

› AngularJS

Motivation

 © d-fine — All rights reserved © d-fine — All rights reserved | 3

Basic Ingredients

 © d-fine — All rights reserved © d-fine — All rights reserved | 4

» Originally developed by Grid Gain Systems

» Recently promoted to a top level project of the Apache Software Foundation

» Can be thought of as a kind of distributed in memory data fabric.

» Based on Java. Configurable using Spring.

» Sometimes seen as a „competitor“ to Apache Spark.

Main Features:

Apache Ignite (1)

Distributed

Computing

Cluster Wide In-

Memory Caches

Service

Deployment

Distributed

Datastructures

(Queues, etc.)

Accesible through easy to use high-level APIs

 © d-fine — All rights reserved © d-fine — All rights reserved | 5

» Example 1: distributed closure (see Ignite documentation)

» Example 2: Query a grid-wide cache using a predicate (see Ignite Documentation)

Apache Ignite (2)

IgniteCompute compute = ignite.compute();

// Execute closure on all cluster nodes.

Collection<Integer> res = compute.apply(String::length, Arrays.asList("How many characters".split(" ")));

// Add all the word lengths received from cluster nodes.

 int total = res.stream().mapToInt(Integer::intValue).sum();

IgniteCache<Long, Person> cache = ignite.cache("mycache");

// Find only persons earning more than 1,000.

 try (QueryCursor cursor = cache.query(new ScanQuery((k, p) -> p.getSalary() > 1000))

{

 for (Person p : cursor)

 System.out.println(p.toString());

}

(SQL based Cache queries are also possible, but require some additional configuration effort)

 © d-fine — All rights reserved © d-fine — All rights reserved | 6

HTTP/HTML5 Interface: Jetty and AngularJS

Jetty

» Traditional web app deployed as packages on some application server

» If your application is already implemented in some sort daemon process anyway and you don‘t

want to run a full application server, why not directly embed a http server?

» Standard option in the Java world: Jetty

» Features easy integration (Maven packages) and allows for running servlets or even fully

fledged applications packaged in a .war file.

AngularJS

» Maintained mostly by Google

» Targeted at single page apps based on MVC pattern

» Features custom HTML5 directives and bidirectional data binding

» Makes JS development less painful…

 © d-fine — All rights reserved © d-fine — All rights reserved | 7

Quantlib / JNI / Thread-Safety

» Thread safety: Since we will embed Quantlib through JNI and run several Java threads in

parallel across a number of Ignite nodes, this is of paramount importance.

» Need to make use of Klaus Spanderen‘s implementation of the thread safe observer pattern

(https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/) – Thank you

very much, Sir!

Scala Integration

» Nice to have: payoff-scripting facility

» Also nice to have: Offer users a way to quickly achieve results using an embedded scripting

facility similar to IPython notebooks, etc.

» To solve both of these problems we integrate a Scala interpreter into our system (although

something like Jython would be equally well suited…)

» Inspired again by https://hpcquantlib.wordpress.com/2011/09/01/using-scala-for-payoff-

scripting/.

Quantlib and Scala Integration

https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/
https://hpcquantlib.wordpress.com/2013/07/26/multi-threading-and-quantlib/

 © d-fine — All rights reserved © d-fine — All rights reserved | 8

The Big Picture

HTML 5 GUI Master Node

Embedded HTTP

Server

Worker Node Quantlib / JNI

Worker Node Worker Node

Ignite Cluster Libs Clients

Excel

Batchprograms

Cache

Cache Cache

Cache

http

http

Other

 © d-fine — All rights reserved © d-fine — All rights reserved | 9

Live Demo

 © d-fine — All rights reserved © d-fine — All rights reserved | 10

A lot remains to be done

» The architecture provides a solid foundation for distributed pricing combined with an easy to

use cluster wide caching mechanism.

» However, for concrete applications a lot remains to be inspected closer or worked on in the

future:

› Overall stability and performance / Integration into production environments

› Caching of compiled Scala scripts / XML Contexts

› High-level market data API on top of Ignite cache and integration of live market data feeds

› Security considerations

› Flexible and easy to use ways for defining new products and models

› Clear workflows for quantitative development und production deployment

Key Message

» There are great open source projects that help you building sophisticated and easy to use

pricing platforms

» Don‘t start developing from scratch and keep an open mind with regards to what‘s out there in

terms of (not only finance related) open source software

Outlook

 © d-fine — All rights reserved © d-fine — All rights reserved | 11

d-fine GmbH

Frankfurt

München

London

Wien

Zürich

Zentrale

d-fine GmbH

Opernplatz 2

D-60313 Frankfurt/Main

Tel +49 69 90737-0

Fax +49 69 90737-200

www.d-fine.com

Dr. Andreas Pfadler

Senior Consultant

andreas.pfadler@d-fine.de

Tel +49 (0)69 90737 0

Mobil +49 (0)162 2630029

d-fine

(textbox is required to avoid an issue

where this page gets rotated by 90°

if printing (both “physical” and pdf))

