
Introduction to Selected Classes of the QuantLib Library I

Dimitri Reiswich

December 2010

Dimitri Reiswich QuantLib Intro I December 2010 1 / 88

QuantLib is an open source library for Quantitative Finance. Some reasons to use it are

It’s free!

If you’re starting to code a C++ project from the scratch, you don’t have to start from
zero. This will allow you to focus on important projects, instead of spending time with
coding basic classes such as Date, Interpolation or Yield Curve classes.

You don’t trust open source libraries? You have to admit that open source libraries have
some advantages over commercial products. Here, the source code is available and you
know exactly what happens in the background. No black-box computations. Clearly, the
potential lack of documentation and user support is a disadvantage.

You already have your own library? Fine. You can still use QuantLib to test and
benchmark the results and performance of your own code.

It is a good place to start learning advanced C++ concepts, such as the usage of design
patterns.

Dimitri Reiswich QuantLib Intro I December 2010 2 / 88

In the whole tutorial I assume that you have included the QuantLib header via

#include <ql/quantlib.hpp>

in the code. I will not state this include command in the example code explicitly, so be sure
that you have included the header everywhere. Also, I will use the QuantLib namespace to
make the code more readable and compact. To reproduce the code, make sure to state

using namespace QuantLib;

in the place where you are using the code.

Dimitri Reiswich QuantLib Intro I December 2010 3 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 4 / 88

QuantLib has some useful macros, which will be introduced first. A few macros enable a
compact error handling syntax. Imagine that you would like to check a variable against zero,
before dividing. If the variable is zero, you’d like to throw an exception via a string. A
common syntax to do this would be

if(x==0) {
std::string myError("Divided by Zero");

throw myError;

}

QuantLib handles the same event with a one-liner:

QL REQUIRE(x!=0,"Divided by Zero")

The macro throws a std::exception which can be handled by the usual catch command. A
similar macro is QL_FAIL, which accepts a message and no condition. Example code follows.

Dimitri Reiswich QuantLib Intro I December 2010 5 / 88

We will test the following functions

void testingMacros1 (){

double x=0.0;

QL_REQUIRE(x!=0,"Zero number!");

}

void testingMacros2 (){

QL_FAIL("Failed!");

}

by calling them in a try,catch block as shown in the example below

int _tmain(int argc , _TCHAR* argv [])

{

try{

testingMacros1 ();

} catch (std:: exception& e) {

std::cout << e.what() << std::endl;

return 1;

} catch (...) {

std::cout << "unknown error" << std::endl;

return 1;

}

}

Dimitri Reiswich QuantLib Intro I December 2010 6 / 88

The function testingMacros1() returns

Zero number!

while testingMacros2() returns

Failed!

You would like to see more output? For example, the name of the function where the error
occurred? Or even the name of the file and the line? You can achieve this by changing the
user configuration in

<ql/userconfig.hpp>

For the function name, change
#ifndef QL ERROR FUNCTIONS

// #define QL ERROR FUNCTIONS

#endif

to (uncomment the middle line)
#ifndef QL ERROR FUNCTIONS

#define QL ERROR FUNCTIONS

#endif

The same procedure can be used to show the file and line information by changing the
QL ERROR LINES block in the same file. You need to recompile QuantLib to see the changes.

Dimitri Reiswich QuantLib Intro I December 2010 7 / 88

The QL LIB VERSION macro returns the current QuantLib version. For example

std::cout << "Current QL Version:" << QL LIB VERSION << std::endl;

yields

Current QL Version:0 9 7

Dimitri Reiswich QuantLib Intro I December 2010 8 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 9 / 88

QuantLib has various special variable types which aim at providing a more intuitive and
clear code. The variables are typedef versions of the standard C++ variables such as
int, double, long. For example, a function may return a variable of type Volatility. This is
implicitly a double variable. Similarly, a variable of type DiscountFactor is provided.

Why all the extra variable types? Consider the following function

void myFunc(double df, double v, double r, double t)

This function accepts a discount factor, a volatility, an interest rate and the time to
maturity. This is not obvious by looking at the variable names only, since all variables are of
type double. Consider the QuantLib equivalent:

void myFunc(DiscountFactor df, Volatility v, Rate r, Time t)

Which one do you find more intuitive? If you are still not convinced: You can cast all
variables easily to their original types.

Dimitri Reiswich QuantLib Intro I December 2010 10 / 88

The following variable types are available

Size is a std::size_t

Integer is an int

Natural is an int

BigInteger is a long

BigNatural is a long

Real is a double

Decimal is a double

Time is a double

DiscountFactor is a double

Rate is a double

Spread is a double

Volatility is a double

Dimitri Reiswich QuantLib Intro I December 2010 11 / 88

As a warm up, write a function called myReciproke which returns 1
x

for a variable x. The
function should accept and return the numbers as a Real object. Check the variable x
against zero before calculating and throw an error in this case. Catch the error in the
main function. Check the functionality of your code.

Dimitri Reiswich QuantLib Intro I December 2010 12 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 13 / 88

A date in QuantLib can be constructed with the following syntax

Date(BigInteger serialNumber)

where BigInteger is the number of days such as 24214, and 0 corresponds to 31.12.1899. This
date handling is also known from Excel. The alternative is the construction via

Date(Day d, Month m, Year y)

Here, Day, Year are of integer types, while Month is a special QuantLib type with

January: either QuantLib::January or QuantLib::Jan

...

December: either QuantLib::December or QuantLib::Dec

After constructing a Date, we can do simple date arithmetics, such as adding/subtracting
days and months to the current date. Furthermore, the known convenient operators such as

++,−−,+ =,− =

can be used. Here, ++,-- add a single day to the existing date. It is possible to add a Period
to a date with the Period(int n,TimeUnit units), TimeUnit ∈ {Days, Weeks, Months, Years }

class. Example code is shown on the next slide.

Dimitri Reiswich QuantLib Intro I December 2010 14 / 88

void DateTesting1 (){

Date myDate (12,Aug ,2009);

std::cout << myDate << std::endl;

myDate ++;

std::cout << myDate << std::endl;

myDate +=12* Days;

std::cout << myDate << std::endl;

myDate -=2* Months;

std::cout << myDate << std::endl;

myDate --;

std::cout << myDate << std::endl;

Period myP(10, Weeks);

myDate +=myP;

std::cout << myDate << std::endl;

}

The output of the function is

August 12th, 2009

August 13th, 2009

August 25th, 2009

June 25th, 2009

June 24th, 2009

September 2nd, 2009

Dimitri Reiswich QuantLib Intro I December 2010 15 / 88

Each Date object has the following functions

weekday() returns the weekday via the QuantLib::Weekday object

dayOfMonth() returns the day of the month as an QuantLib::Day object

dayOfYear() returns the day of the year as an QuantLib::Day object

month() returns a QuantLib::Month object

year() returns a QuantLib::Year object

serialNumber() returns a QuantLib::BigInteger object

The function names should be self-explaining. Are you confused by all the new objects such
as QuantLib::Day and QuantLib::Year? Do you ask yourself, if this is all necessary and if you
couldn’t have achieved the same via simple int objects? The good news is, that all objects
can implicitly be converted to integers. For example, you can call
int myDay=myDate.dayOfYear() instead of Day myDay=dayOfYear(), as illustrated in the code on the
next slide.

Dimitri Reiswich QuantLib Intro I December 2010 16 / 88

The following code tests the introduced functions

void DateTesting2 (){

Date myDate (12, QuantLib ::Aug ,2009);

std::cout << "Original Date:" << myDate << std::endl;

std::cout << "Weekday:" << myDate.weekday () << std::endl;

std::cout << "Day of Month:" << myDate.dayOfMonth () << std::endl;

std::cout << "Day of Year:" << myDate.dayOfYear () << std::endl;

std::cout << "Month:" << myDate.month() << std::endl;

int month=myDate.month ();

std::cout << "Month via Integer:" << month << std::endl;

std::cout << "Year:" << myDate.year() << std::endl;

int serialNum=myDate.serialNumber ();

std::cout << "Serial Number:" << serialNum << std::endl;

}

Dimitri Reiswich QuantLib Intro I December 2010 17 / 88

The output of the previous code is

Original Date:August 12th, 2009

Weekday:Wednesday

Day of Month:12

Day of Year:224

Month:August

Month via Integer:8

Year:2009

Serial Number:40037

Dimitri Reiswich QuantLib Intro I December 2010 18 / 88

The QuantLib Date class has some useful static functions, which give general results, such
as whether a given year is a leap year or a given date is the end of the month. The currently
available functions are

Date::todaysDate()

Date::minDate(): earliest possible Date in QuantLib

Date::maxDate(): latest possible Date in QuantLib

bool::isLeap(Year y): is y a leap year?

Date::endOfMonth(const Date& d): what is the end of the month, in which d is a day?

bool::isEndOfMonth(const Date& d): is d the end of the month?

Date::nextWeekday(const Date& d, Weekday w): on which date is the weekday w following
the date d? (e.g. date of the next Friday)

Date nthWeekday(Size n, Weekday w,Month m,Year y):what is the n-th weekday in the given
year and month? (e.g. date of the 3rd Wednesday in July 2010)

Dimitri Reiswich QuantLib Intro I December 2010 19 / 88

Example code for the introduced functions:

void DateTesting3 (){

std::cout << "Today:" << Date:: todaysDate () << std::endl;

std::cout << "Min Date:" << Date:: minDate () << std::endl;

std::cout << "Max Date:" << Date:: maxDate () << std::endl;

std::cout << "Is Leap:" << Date:: isLeap (2011) << std::endl;

std::cout << "End of Month:" << Date:: endOfMonth(Date(4,Aug ,2009)) << std::endl;

std::cout << "Is Month End:" << Date:: isEndOfMonth(Date(29,Sep ,2009)) << std::endl;

std::cout << "Is Month End:" << Date:: isEndOfMonth(Date(30,Sep ,2009)) << std::endl;

std::cout << "Next WD:" << Date:: nextWeekday(Date(1,Sep ,2009) , Friday) << std::endl;

std::cout << "n-th WD:" << Date:: nthWeekday (3,Wed ,Sep ,2009)<< std::endl;

}

The output of this function is

Today:September 1st, 2009

Min Date:January 1st, 1901

Max Date:December 31st, 2199

Is Leap :0

End of Month:August 31st, 2009

Is Month End:0

Is Month End:1

Next WD:September 4th, 2009

n-th WD:September 16th, 2009

Dimitri Reiswich QuantLib Intro I December 2010 20 / 88

Some situations may require the setting of the pricing date of an instrument to some past or
future date. This instrument may depend on other instruments, which have to be evaluated
at the new date too. To make such a procedure convenient, QuantLib provides a global
settings instance, where you can set a global evaluation date. The current evaluation date
can be retrieved via

Settings::instance().evaluationDate()

This date can be set to a customized evaluation date. Example code is shown below

void DateTesting4 (){

Date d = Settings :: instance (). evaluationDate ();

std::cout << "Eval Date:" << d << std::endl;

Settings :: instance (). evaluationDate ()= Date(5,Jan ,1995);

d=Settings :: instance (). evaluationDate ();

std::cout << "New Eval Date:" << d << std::endl;

}

The output of this function is

Eval Date:September 2nd, 2009

New Eval Date:January 5th, 1995

Dimitri Reiswich QuantLib Intro I December 2010 21 / 88

One of the crucial objects in the daily business is a calendar for different countries which
shows the holidays, business days and weekends for the respective country. In QuantLib, a
calendar can be set up easily via

Calendar myCal=UnitedKingdom()

for the UK. Various other calendars are available, for example for Germany, United States,
Switzerland, Ukraine, Turkey, Japan, India, Canada and Australia. In addition, special
exchange calendars can be initialized for several countries. For example, the Frankfurt Stock
Exchange calendar can be initialized via

Calendar myCal=Germany(Germany::FrankfurtStockExchange);

The following functions are available:

bool isBusinessDay(const Date& d)

bool isHoliday(const Date& d)

bool isWeekend(Weekday w): is the given weekday part of the weekend?

bool isEndOfMonth(const Date& d): indicates, whether the given date is the last business
day in the month.

Date endOfMonth(const Date& d): returns the last business day in the month.

Dimitri Reiswich QuantLib Intro I December 2010 22 / 88

The introduced functions are tested below

void CalendarTesting1 (){

Calendar frankfCal=Germany(Germany :: FrankfurtStockExchange);

Calendar saudiArabCal=SaudiArabia ();

Date nyEve(31,Dec ,2009);

std::cout << "Is BD:" << frankfCal.isBusinessDay(nyEve) << std::endl;

std::cout << "Is Holiday:" << frankfCal.isHoliday(nyEve) << std::endl;

std::cout << "Is Weekend:" << saudiArabCal.isWeekend(Saturday) << std::endl;

std::cout << "Is Last BD:" << frankfCal.isEndOfMonth(Date(30,Dec ,2009)) << std::endl;

std::cout << "Last BD:" << frankfCal.endOfMonth(nyEve) << std::endl;

}

Is BD:0

Is Holiday:1

Is Weekend:0

Is Last BD:1

Last BD:December 30th, 2009

Note, that the Saturday is not a weekend in Saudi Arabia. As usual, the number 1 represents
true while 0 represents false.

Dimitri Reiswich QuantLib Intro I December 2010 23 / 88

The calendars are customizable, so you can add and remove holidays in your calendar:

void addHoliday(const Date& d): adds a user specified holiday

void removeHoliday(const Date& d): removes a user specified holiday

Furthermore, a function is provided to return a vector of holidays

std::vector<Date> holidayList(const Calendar& calendar,

const Date& from, const Date& to,bool includeWeekEnds): returns a holiday list, including
or excluding weekends.

To continue the previous example from function void CalendarTesting1(), we can remove the
31-st of December as a holiday and add the 30-th, which was the last business day so far.
Example code is given on the next slide.

Dimitri Reiswich QuantLib Intro I December 2010 24 / 88

#include <boost/foreach.hpp >

void CalendarTesting2 (){

Calendar frankfCal=Germany(Germany :: FrankfurtStockExchange);

Date d1(24,Dec ,2009) , d2(30,Dec ,2009) ,d3(31,Dec ,2009);

frankfCal.addHoliday(d2);

frankfCal.removeHoliday(d3);

std::cout << "Is Business Day:" << frankfCal.isBusinessDay(d2) << std::endl;

std::cout << "Is Business Day:" << frankfCal.isBusinessDay(d3) << std::endl;

std::vector <Date > holidayVec=frankfCal.holidayList(frankfCal ,d1 ,d2,false);

std::cout << " ----------" << std::endl;

BOOST_FOREACH(Date d,holidayVec) std::cout << d << std::endl;

}

The output is

Is Business Day:0

Is Business Day:1

December 24th, 2009

December 25th, 2009

December 30th, 2009

Dimitri Reiswich QuantLib Intro I December 2010 25 / 88

Adjusting a date can be necessary, whenever a transaction date falls on a date that is not a
business day. The following Business Day Conventions are available in QuantLib:

Following: the transaction date will be the first following day that is a business day.

ModifiedFollowing: the transaction date will be the first following day that is a
business day unless it is in the next month. In this case it will be the first preceding day
that is a business day.

Preceding: the transaction date will be the first preceding day that is a business day.

ModifiedPreceding: the transaction date will be the first preceding day that is a
business day, unless it is in the previous month. In this case it will be the first following
day that is a business day.

Unadjusted

Dimitri Reiswich QuantLib Intro I December 2010 26 / 88

The QuantLib::Calendar functions which perform the business day adjustments are

Date adjust(const Date&, BusinessDayConvention convention)

Date advance(const Date& date,const Period& period,

BusinessDayConvention convention,bool endOfMonth): the endOfMonth variable enforces the
advanced date to be the end of the month if the current date is the end of the month.

Finally, it is possible to count the business days between two dates with the following
function

BigInteger businessDaysBetween(const Date& from, const Date& to,

bool includeFirst, bool includeLast): calculates the business days between from and to

including or excluding the initial/final dates.

We will demonstrate an example by using the Frankfurt Stock Exchange calendar and the
dates Date(31,Oct,2009) and Date(1,Jan,2010). From the first date, we advance 2 months in
the future, which is December, 31st. Since this is a holiday and the next business day is in
the next month, we can check the Modified Following conversion. The Modified Preceding
conversion can be checked for January, 1st 2010.

Dimitri Reiswich QuantLib Intro I December 2010 27 / 88

void CalendarTesting3 (){

Calendar frankfCal=Germany(Germany :: FrankfurtStockExchange);

Date firstDate (31,Oct ,2009);

Date secondDate (1,Jan ,2010);

std::cout <<"Date 2 Adv:" << frankfCal.adjust(secondDate ,

BusinessDayConvention(Preceding)) << std::endl;

std::cout <<"Date 2 Adv:" << frankfCal.adjust(secondDate ,

BusinessDayConvention(ModifiedPreceding)) << std::endl;

Period mat(2,Months);

std::cout << "Date 1 Month Adv:" << frankfCal.advance(firstDate ,mat ,

BusinessDayConvention(Following),false) << std::endl;

std::cout << "Date 1 Month Adv:" << frankfCal.advance(firstDate ,mat ,

BusinessDayConvention(ModifiedFollowing),false) << std::endl;

std::cout << "Business Days Between:" << frankfCal.businessDaysBetween(

firstDate ,secondDate ,false ,false) << std::endl;

}

Dimitri Reiswich QuantLib Intro I December 2010 28 / 88

The output of the function is

Date 2 Adv:December 30th, 2009

Date 2 Adv:January 4th, 2010

Date 1 Month Adv:January 4th, 2010

Date 1 Month Adv:December 30th, 2009

Business Days Between:41

Dimitri Reiswich QuantLib Intro I December 2010 29 / 88

Daycount conventions are crucial in financial markets. QuantLib offers

Actual360: Actual/360 day count convention

Actual365Fixed: Actual/365 (Fixed)

ActualActual: Actual/Actual day count

Business252: Business/252 day count convention

Thirty360: 30/360 day count convention

The construction is easily performed via

DayCounter myCounter=ActualActual();

The other conventions can be constructed equivalently. The available functions are

BigInteger dayCount(const Date& d1, const Date& d2)

Time yearFraction(const Date&, const Date&)

Example code is provided on the next slide.

Dimitri Reiswich QuantLib Intro I December 2010 30 / 88

void dayCounterTesting1 (){

DayCounter dc=Thirty360 ();

Date d1(1,Oct ,2009);

Date d2=d1+2* Months;

std::cout << "Days Between d1/d2:" <<dc.dayCount(d1 ,d2) << std::endl;

std::cout << "Year Fraction d1/d2:" <<dc.yearFraction(d1,d2) << std::endl;

}

The output of the function is

Days Between d1 and d2:60

Year Fraction d1 and d2:0.166667

Dimitri Reiswich QuantLib Intro I December 2010 31 / 88

An often needed functionality is a schedule of payments, for example for coupon payments of
a bond. The task is to produce a series of dates from a start to an end date following a given
frequency(e.g. annual, quarterly...). We might want the dates to follow a certain business day
convention. And we might want the schedule to go backwards (e.g. start the frequency going
backwards from the last date). For example:

Today is Date(3,Sep,2009). We need a monthly schedule which ends at Date(15,Dec,2009).
Going forwards would produce
Date(3,Sep,2009),Date(3,Oct,2009),Date(3,Nov,2009),Date(3,Dec,2009) and the final date
Date(15,Dec,2009).

Going backwards, on a monthly basis, would produce
Date(3,Sep,2009),Date(15,Sep,2009),Date(15,Oct,2009), Date(15,Nov,2009),Date(15,Dec,2009).

The different procedures are given by the DateGeneration object and will now be summarized.

Dimitri Reiswich QuantLib Intro I December 2010 32 / 88

Backward: Backward from termination date to effective date.

Forward: Forward from effective date to termination date.

Zero: No intermediate dates between effective date and termination date.

ThirdWednesday: All dates but effective date and termination date are taken to be on the
third Wednesday of their month (with forward calculation).

Twentieth: All dates but the effective date are taken to be the twentieth of their month
(used for CDS schedules in emerging markets). The termination date is also modified.

TwentiethIMM: All dates but the effective date are taken to be the twentieth of an IMM
month (used for CDS schedules). The termination date is also modified.

The schedule is initialized by the Schedule class, whose constructor is shown on the next slide.

Dimitri Reiswich QuantLib Intro I December 2010 33 / 88

Schedule(const Date& effectiveDate ,

const Date& terminationDate ,

const Period& tenor ,

const Calendar& calendar ,

BusinessDayConvention convention ,

BusinessDayConvention terminationDateConvention ,

DateGeneration ::Rule rule ,

bool endOfMonth ,

const Date& firstDate = Date(),

const Date& nextToLastDate = Date ())

The variables represent the following

effectiveDate,terminationDate: start/end of the schedule

tenor: the frequency of the schedule (e.g. every 3 months)

terminationDateConvention: allows to specify a special business day convention for the
final date.

rule: the generation rule, as previously discussed

endOfMonth: if the effective date is the end of month, enforce the schedule dates to be end
of the month too (termination date excluded).

firstDate,nextToLastDate: are optional parameters. If we generate the schedule forwards,
the schedule procedure will start from firstDate and then increase in the given periods
from there. If nextToLastDate is set and we go backwards, the dates will be calculated
relative to this date.

Dimitri Reiswich QuantLib Intro I December 2010 34 / 88

The Schedule object has various useful functions, we will discuss some of them.

Size size(): returns the number of dates

const Date& operator[](Size i): returns the date at index i. Alternatively, there is the
function const Date& at(Size i) to do the same thing.

Date previousDate(const Date& refDate): returns the previous date in the schedule
compared to a reference date.

Date nextDate(const Date& refDate): returns the next date in the schedule compared to a
reference date.

const std::vector<Date>& dates(): returns the whole schedule in a vector.

Dimitri Reiswich QuantLib Intro I December 2010 35 / 88

The following function sets up a semi-annual schedule beginning on September, 30 th 2009
and ending on June, 15th 2012. We write the date vector and print each of the components.

#include <boost/foreach.hpp >

void testingSchedule1 (){

Date begin(30,September ,2009) , end(15,Jun ,2012);

Calendar myCal=Japan ();

BusinessDayConvention bdC=BusinessDayConvention(Following);

Period myTenor(6,Months);

DateGeneration ::Rule myRule=DateGeneration :: Forward;

Schedule mySched(begin ,end ,myTenor ,myCal ,bdC ,bdC ,myRule ,true);

std::vector <Date > finalSched=mySched.dates ();

BOOST_FOREACH(Date d,finalSched) std::cout << d << std::endl;

}

Dimitri Reiswich QuantLib Intro I December 2010 36 / 88

The output of the function is:

September 30th, 2009

March 31st, 2010

September 30th, 2010

March 31st, 2011

September 30th, 2011

March 30th, 2012

June 15th, 2012

Note, how the scheduled dates were shifted to the end of the respective month. Switching the
rule from Forward to Backward in the same program yields

September 30th, 2009

December 15th, 2009

June 15th, 2010

December 15th, 2010

June 15th, 2011

December 15th, 2011

June 15th, 2012

Dimitri Reiswich QuantLib Intro I December 2010 37 / 88

Now, we test the next and previous date functions. Suppose today’s date is August, 3rd
2010. We would like to know the next and previous date in the example schedule, relative to
today. The code and output is given below

void testingSchedule3 (){

Date begin(30,September ,2009) , end(15,Jun ,2012);

Calendar myCal=Japan ();

BusinessDayConvention bdC=BusinessDayConvention(Following);

Period myTenor(6,Months);

DateGeneration ::Rule myRule=DateGeneration :: Forward;

Schedule mySched(begin ,end ,myTenor ,myCal ,bdC ,bdC ,myRule ,true);

Date myDate(3,Aug ,2010);

std::cout << "Date:" << myDate << std::endl;

std::cout << "Next Date:" << mySched.nextDate(myDate) << std::endl;

std::cout << "Prev Date:" << mySched.previousDate(myDate) << std::endl;

}

Date:August 3rd, 2010

Next Date:September 30th, 2010

Prev Date:March 31st, 2010

Dimitri Reiswich QuantLib Intro I December 2010 38 / 88

The constructor of the Schedule class is quite complex. QuantLib provides a MakeSchedule class
which generates a schedule more conveniently. The basic structure of the syntax is as follows:

Schedule mySchedule=MakeSchedule(effectiveDate, terminationDate,

tenor,calendar,convention).function1().function2()....functionLast();

This is an example of the factory pattern: the MakeSchedule class is the factory producing a
Schedule object. The functions can be called in any order such that you do not have to
remember in which order the variables are initialized. An example for a function is
withRule(DateGeneration::Rule). An example setup with MakeSchedule is shown next.

Dimitri Reiswich QuantLib Intro I December 2010 39 / 88

void testingSchedule4 (){

Date begin(30,September ,2009) , end(15,Jun ,2012);

Calendar myCal=Japan ();

BusinessDayConvention bdC=BusinessDayConvention(Following);

Period myTenor(6,Months);

Schedule myScheduleMade=MakeSchedule(begin ,end ,myTenor ,myCal ,bdC)

.backwards ()

.endOfMonth(false)

.withNextToLastDate(Date(24,Aug ,2011));

std::vector <Date > finalSched=myScheduleMade.dates ();

BOOST_FOREACH(Date d,finalSched) std::cout << d << std::endl;

}

The output is

September 30th, 2009

February 24th, 2010

August 24th, 2010

February 24th, 2011

August 24th, 2011

June 15th, 2012

Dimitri Reiswich QuantLib Intro I December 2010 40 / 88

Find out which of the following countries has the maximum number of holidays in 2009
(weekends excluded): Germany, UK, United States, Switzerland, Japan.

Choose the calendar of the respective country and calculate the maximum number of
business days between two holidays (e.g. the maximum number of days you have to
work until the next holiday)

Dimitri Reiswich QuantLib Intro I December 2010 41 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 42 / 88

QuantLib uses factory classes within its code. Although no explicit class template is
provided, we will show how this pattern is realized in QuantLib. This will make it easier for
the user to understand some classes and is a nice code design example. Consider the MyOption

class below

class MyOption{

public:

enum Type{Call=1,Put=-1,None =0};

MyOption(Time mat , Volatility vol , Type type , Real spot ,

Rate forRate , Rate domRate , Real strike):mat_(mat),vol_(vol),

type_(type),spot_(spot),forRate_(forRate),domRate_(domRate),

strike_(strike){

}

Time getMat () const{return mat_;}

Real getSpot ()const{return spot_;}

Real getStrike ()const{return strike_ ;}

private:

Time mat_; Volatility vol_;

Real spot_ ,strike_;

Rate forRate_ ,domRate_;

Type type_;

};

Dimitri Reiswich QuantLib Intro I December 2010 43 / 88

Despite being relatively simple, the class needs a lot of input variables. A user needs to know
the exact order of the input variables at the time of an instance setup (although some IDE
tools are available to provide assistance here). Also, it can be useful to provide default
parameters to some variables such as type_=MyOption::Call. This is possible without any
specific design by simply setting type_=MyOption::Call in the constructor. However, this
requires a reordering of the variables as default variables have to appear at the end of the
constructor.

In QuantLib you will often find classes which are characterized by a Make attribute in their
name (i.e. MakeSwaption). In our illustrative case we will call the class MakeMyOption. This class
can have any default constructor which doesn’t need to initialize all variables. The member
variables will be initialized by factory functions. The typical syntax of such a function is

MakeMyOption& withVol(const Volatility& vol){

vol_=vol;

return *this;

}

Such a function overwrites the respective member variable and returns the current object by
reference. Invoking another function on the new object will overwrite additional variables.

Dimitri Reiswich QuantLib Intro I December 2010 44 / 88

This syntax allows a consecutive calling of many factory functions with a convenient syntax.
The order of the functions is not relevant, you do not have to remember if volatility or the
interest rate is written first. The last point is the extraction of the finished MyOption instance
from the MakeMyOption factory class. This is achieved by a cast operator of the form

operator MyOption(){.... return option_;}

The cast operator is familiar from cast operations like int i=2; double x=(double)i, which
casts a variable of type int to a variable of type double. An equivalent syntax would be
double x=i;. In C++ it is possible to define an own cast operator with the syntax shown above.
Consequently, it will be possible to write

MyOption option=MakeMyOption();

The cast operator of MakeMyOption returns a built MyOption instance, it is a factory for the
MyOption class. Although being very convenient, the setup bears some risks. The programmer
has to decide what to do if some of the variables is not initialized. He can either throw an
exception or give the variable a default value. The first solution is safer but aborts the
program if the exception is not handled appropriately. The second solution can be risky
because the user does not know that he forgot to initialize some variables. He will then use
some default value without being aware of it. In our example we choose the first version and
initialize all variables with Null<Real> when the default constructor is called. In the cast
operator, all variables are checked against this value and an exception is thrown if the
variable was not initialized. The final MakeMyOption class code is shown below.

Dimitri Reiswich QuantLib Intro I December 2010 45 / 88

class MakeMyOption{

public:

MakeMyOption (): mat_(Null <Real >()), vol_(Null <Real >()), spot_(Null <Real >()),

strike_(Null <Real >()), forRate_(Null <Real >()),

domRate_(Null <Real >()), type_(MyOption ::None){

}

MakeMyOption& withMat(const double& mat){

mat_=mat;

return *this;

}

MakeMyOption& withVol(const double& vol){

vol_=vol;

return *this;

}

MakeMyOption& withSpot(const double& spot){

spot_=spot;

return *this;

}

MakeMyOption& withStrike(const double& strike){

strike_=strike;

return *this;

}

MakeMyOption& withForRate(const double& forRate){

forRate_=forRate;

return *this;

}

MakeMyOption& withDomRate(const double& domRate){

domRate_=domRate;

return *this;

}

MakeMyOption& withType(const MyOption ::Type& type){

type_=type;

return *this;

}

operator MyOption () const{

QL_REQUIRE(mat_!=Null <Real >(),"Maturity not set!");

// Check other parameters too

QL_REQUIRE(type_ != MyOption ::None ,"Option type not set!");

return MyOption(mat_ ,vol_ ,type_ ,spot_ ,forRate_ ,domRate_ ,strike_);

}

Time getMat () const{return mat_;}

Real getSpot ()const{return spot_;}

Real getStrike ()const{return strike_ ;}

private:

Time mat_;

Volatility vol_;

Real spot_ ,strike_;

Rate forRate_ ,domRate_;

MyOption ::Type type_;

};

Dimitri Reiswich QuantLib Intro I December 2010 46 / 88

An example initialization is shown below

void testingFactory2 (){

Real spot =100.0 , strike =110.0;

Rate rd=0.03 , rf =0.01;

Volatility vol =0.20;

Time mat =1.0;

MyOption ::Type type(MyOption ::Call);

MyOption optionMade=MakeMyOption ()

.withType(type)

.withMat(mat)

.withSpot(spot)

.withForRate(rf)

.withStrike(strike)

.withVol(vol)

.withDomRate(rd);

std::cout << "Mat Made:" << optionMade.getMat () << std::endl;

std::cout << "Spot Made:" << optionMade.getSpot () << std::endl;

std::cout << "Strike Made:" << optionMade.getStrike () << std::endl;

}

Using the factory design yields a more readable code, which is also easier to setup. Also, the
order of the initialization is irrelevant. The output of the function is

Mat Made:1

Spot Made:100

Strike Made:110

Dimitri Reiswich QuantLib Intro I December 2010 47 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 48 / 88

The Singleton pattern is a design where a class is allowed to have only one instance. For
example, one application is a global repository where you store market objects. In this case it
is important to have a single repository that is used by all classes, e.g. you want the pricing
to be based on the same yield curve. A global variable does not meet these requirements,
since it can not be ensured that multiple objects are instantiated. To implement a QuantLib
Singleton object you need to derive from the Singleton in the following exemplary way

class Foo : public Singleton <Foo > {

friend class Singleton <Foo >;

private:

Foo() {}

public:

...

};

An instance of the class is retrieved by the ::instance() function. We will demonstrate the
usage by a heterogeneous global repository example.

Dimitri Reiswich QuantLib Intro I December 2010 49 / 88

The repository has a function called

void addObject(const std::string& id, const boost::any& obj, bool overwrite = true)

which adds an object with its respective ID to the repository. Note that you don’t have to
pass an any object but ”any” object. The boolean indicates if any object with the same name
shall be overwritten or not. The object can be retrieved with

template <class T> boost::optional<T> getObject(const std::string& id, Error& err)

The error variable is optional and writes an error in case the object could not be found
(either due to a non existing ID or due to a casting failure). An object of type optional is
returned. Before proceeding one can check if this is a 0 (failed) or 1 (success) variable and
dereference it afterwards. Additional functions are

bool objectExists(const std::string& id)

void deleteObject(const std::string& id)

void deleteAllObjects()

unsigned int numberObjects() returns the total number of objects

template <class T> unsigned int getObjectCount() get number of objects with type T

Dimitri Reiswich QuantLib Intro I December 2010 50 / 88

#include <boost/optional.hpp >

#ifndef object_repository_h

#define object_repository_h

class ObjectRepository: public QuantLib ::Singleton <ObjectRepository >{

friend class QuantLib ::Singleton <ObjectRepository >;

public:

enum Error{NoError ,CastingFailed ,IdNotFound };

// function to add objects

// ---

// add and delete objects

void addObject(const std:: string& id, const boost::any& obj , bool overwrite = true){

it_ =(* rep_).find(id);

if(it_ !=(* rep_).end ()){

if(overwrite ==true){

(*rep_)[id]=obj;

}

else{

QL_FAIL("Can not overwrite object.");

}

}

else{

(*rep_)[id]=obj;

}

}

void deleteObject(const std:: string& id){

it_ =(* rep_).find(id);

if(it_!=rep_ ->end ()){

rep_ ->erase(it_);

}

}

void deleteAllObjects (){

(*rep_).clear ();

}

bool objectExists(const std:: string& id){

it_ =(* rep_).find(id);

if(it_ !=(* rep_).end ()){

return true;

}

else{

return false;

}

}

// ---

unsigned int numberObjects () const{

return (*rep_).size ();

}

// function to get objects by id

template <class T> boost::optional <T> getObject(const std:: string& id, Error& err){

err=Error(NoError);

it_ =(* rep_).find(id);

if(it_==rep_ ->end ()){

err=Error(IdNotFound);

return boost ::optional <T>();

}

T* ptrT=boost ::any_cast <T>(&it_ ->second);

if(ptrT==NULL){

err=Error(CastingFailed);

return boost ::optional <T>();

}

return boost ::optional <T>(* ptrT);

}

template <class T> boost::optional <T> getObject(const std:: string& id){

Error err=Error(NoError);

return getObject <T>(id,err);

}

template <class T> unsigned int getObjectCount (){

unsigned long res =0;

it_ =(* rep_).begin ();

while(it_ !=(* rep_).end ()){

T* tmpObj =boost ::any_cast <T>(&it_ ->second);

if(tmpObj !=NULL){

res ++;

}

it_ ++;

}

return res;

}

private:

static boost::shared_ptr <std::map <std::string ,boost::any >> rep_;

std::map <std::string ,boost ::any >:: iterator it_;

Error err_;

};

boost:: shared_ptr <std::map <std::string ,boost::any >>

ObjectRepository ::rep_(new std::map <std::string ,boost ::any >());

std:: ostream& operator <<(std:: ostream& out , const ObjectRepository ::Error& err){

if(err== ObjectRepository :: NoError){

return out << "NoError";

}

else if(err== ObjectRepository :: CastingFailed){

return out << " CastingFailed ";

}

else if(err== ObjectRepository :: IdNotFound){

return out << " IdNotFound ";

}

else{

return out << " UnknownError ";

}

}

#endif

Dimitri Reiswich QuantLib Intro I December 2010 51 / 88

#include <boost/foreach.hpp >

#include " Singleton1 .h"

void addVariable ();

void testingSingleton1 (){

addVariable ();

std:: string myStr1("myStr1");

std::vector <int > myVec1 (6,2);

ObjectRepository :: instance (). addObject("str1",myStr1);

ObjectRepository :: instance (). addObject("vec1",myVec1);

std:: string myDblId("dbl1");

ObjectRepository :: Error myErr;

boost::optional <double > myDblGet=ObjectRepository :: instance (). getObject <double >(myDblId ,myErr);

std::cout << "Object exits ?: " << ObjectRepository :: instance (). objectExists(myDblId)<<std::endl;

std::cout << "getObject double return: "<< myDblGet << std::endl;

std::cout << " dereferenced double return: "<< *myDblGet << std::endl;

std::cout << "Error: " << myErr << std::endl;

std::cout << " -------------------------------" << std::endl;

boost::optional <std::vector <int >> myVecGet=

ObjectRepository :: instance (). getObject <std::vector <int >>("vec1");

std::cout << "getObject vector return: " << myVecGet << std::endl;

BOOST_FOREACH(int x,* myVecGet) std::cout << x << std::endl;

}

void addVariable (){

double myDbl1 =2.123;

ObjectRepository :: instance (). addObject("dbl1",myDbl1);

}

Dimitri Reiswich QuantLib Intro I December 2010 52 / 88

The output of the function is

Object exits?: 1

getObject double return: 1

dereferenced double return: 2.123

Error: NoError

getObject vector return: 1

2

2

2

2

2

2

Dimitri Reiswich QuantLib Intro I December 2010 53 / 88

A function testing the other functions is shown below

#include <boost/foreach.hpp >

#include " Singleton1 .h"

void addVariable ();

void testingSingleton2 (){

try{

addVariable ();

double myDbl2 =4.144 , myDbl3 =3.122;

std:: string myStr1("myStr1"),myStr2("myStr2");

std::vector <int > myVec1 (6,2), myVec2 (10,1), myVec3 (2,2), myVec4 (4,1);

ObjectRepository :: instance (). addObject("dbl2",myDbl2);

ObjectRepository :: instance (). addObject("dbl3",myDbl3);

ObjectRepository :: instance (). addObject("str1",myStr1);

ObjectRepository :: instance (). addObject("str2",myStr2);

ObjectRepository :: instance (). addObject("vec1",myVec1);

ObjectRepository :: instance (). addObject("vec2",myVec2);

ObjectRepository :: instance (). addObject("vec3",myVec3);

ObjectRepository :: instance (). addObject("vec4",myVec4);

std::cout << "Number Objects:" << ObjectRepository :: instance (). numberObjects () << std::endl;

std::cout << "Number Doubles:" << ObjectRepository :: instance (). getObjectCount <double >() << std::endl;

std::cout << "Number Strings:" << ObjectRepository :: instance (). getObjectCount <std::string >() << std::endl;

std::cout << "Number Vectors:" << ObjectRepository :: instance (). getObjectCount <std::vector <int >>() << std::endl;

std::cout << " -------------------------------" << std::endl;

std:: string myDblId("dbl1");

ObjectRepository :: Error err;

boost::optional <double > myDblGet =ObjectRepository :: instance (). getObject <double >(myDblId ,err);

std::cout << "Object exits ?: " << ObjectRepository :: instance (). objectExists(myDblId)<<std::endl;

std::cout << " getObject double return: "<< myDblGet << std::endl;

std::cout << " dereferenced double return: "<< *myDblGet << std::endl;

std::cout << "Error: " << err << std::endl;

std::cout << " -------------------------------" << std::endl;

ObjectRepository :: instance (). deleteObject(myDblId);

myDblGet=ObjectRepository :: instance (). getObject <double >(myDblId ,err);

std::cout << "Object exits ?: " << ObjectRepository :: instance (). objectExists(myDblId)<<std::endl;

std::cout << " getObject after delete return: "<< myDblGet << std::endl;

std::cout << "Error: " << err << std::endl;

std::cout << " -------------------------------" << std::endl;

double myDbl1 =2.123;

// reverse deleting

ObjectRepository :: instance (). addObject(myDblId ,myDbl1);

// try to get string from double

boost::optional <std::string > wrongTypeGet

=ObjectRepository :: instance (). getObject <std::string >(myDblId ,err);

std::cout << " getObject wrong type return: " << wrongTypeGet << std::endl;

std::cout << "Error: " << err << std::endl;

std::cout << " -------------------------------" << std::endl;

// try to look for wrong id

boost::optional <double > wrongDblType=ObjectRepository :: instance (). getObject <double >(" myDblFalse ",err);

std::cout << " getObject wrong id return: "<< wrongDblType << std::endl;

std::cout << "Error: " << err << std::endl;

std::cout << " -------------------------------" << std::endl;

boost::optional <std::vector <int >> myVecGet=

ObjectRepository :: instance (). getObject <std::vector <int >>("vec1",err);

std::cout << " getObject vector return: " << myVecGet << std::endl;

std::cout << "Error: " << err << std::endl;

BOOST_FOREACH(int x,* myVecGet) std::cout << x << std::endl;

} catch (std:: exception& e) {

std::cout << e.what() << std::endl;

} catch (...) {

std::cout << "unknown error" << std::endl;

}

}

void addVariable (){

double myDbl1 =2.123;

ObjectRepository :: instance (). addObject("dbl1",myDbl1);

}

Dimitri Reiswich QuantLib Intro I December 2010 54 / 88

Number Objects:9

Number Doubles:3

Number Strings:2

Number Vectors:4

Object exits?: 1

getObject double return: 1

dereferenced double return: 2.123

Error: NoError

Object exits?: 0

getObject after delete return: 0

Error: IdNotFound

getObject wrong type return: 0

Error: CastingFailed

getObject wrong id return: 0

Error: IdNotFound

getObject vector return: 1

Error: NoError

2

2

2

2

2

2Dimitri Reiswich QuantLib Intro I December 2010 55 / 88

Write 2 void sub-functions addOption1() and addOption2() which store 2 different MyOption

objects(created with the factory pattern) in the repository. Call the functions in a main
function to store the objects, try to extract them afterwards and check if the option
properties are recovered correctly.

Dimitri Reiswich QuantLib Intro I December 2010 56 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 57 / 88

One of the most important design patterns are the Observer, Observable patterns. This
pattern defines a one-to-many relationship, such that the change of an object-state is
updated automatically in all dependent objects. One can think of many examples in
Quantitative Finance where this is needed. For example, think about a yield curve which is
passed as an object to other classes. Since yields change on a regular basis, you would like to
update the dependent classes such that the pricing is based on an updated curve. This is
exactly the purpose of QuantLib’s Observer/Observable patterns. The Observer class has a
default and a copy constructor without any input arguments. The functionality is added by
two public non-virtual functions called

void registerWith(const boost::shared_ptr<Observable>&);

void unregisterWith(const boost::shared_ptr<Observable>&);

which implement the registration policy for Observables. Note, that a boost::shared_ptr to an
Observable has to be passed. Furthermore, a public, pure virtual update function is given with

virtual void update()

This function is called by the observed objects whenever they change, and needs to be
overwritten. To use the Observer class, you need to derive from this class and implement the
update function.

Dimitri Reiswich QuantLib Intro I December 2010 58 / 88

The Observable class has a default and copy constructor and a public function called

void notifyObservers();

The user needs to call the function at a suitable place in classes which are derived from the
Observable class. It remains to decide when and whether the observers should be notified.
Calling this function triggers the update() function of all observers. Note, that an Observable

can be an Observer at the same time.

To illustrate the pattern, let us implement a simple yield and discount factor classes. The
yield class is an Observable which changes on a regular basis. The discount factor class is an
Observer with a yield class instance as a member. It returns the discount factor for a given
time. The yield class will have a void setYield(...) function, which notifies the observers
since the yield has changed. The discount factor will have an update() function which
recalculates the discount factor based on the new yield. The discount factor class will be an
Observable at the same time in case other classes need to observe it. The code setup is
illustrated next.

Dimitri Reiswich QuantLib Intro I December 2010 59 / 88

class SimpleYield: public Observable{

private:

Rate yield_;

public:

SimpleYield(const Rate& yield): yield_(yield){

}

Rate getYield () const{return yield_ ;}

void setYield(const Rate& yield){

yield_=yield;

// yield has changed , notify observers!

notifyObservers ();

}

};

class SimpleDiscountFactor: public Observable , Observer{

private:

DiscountFactor df_;

Time mat_;

boost::shared_ptr <SimpleYield > y_;

public:

SimpleDiscountFactor(const boost::shared_ptr <SimpleYield >& y,

Time& mat):y_(y),mat_(mat){

// register yield as an observable!

registerWith(y_);

df_=exp(-y_ ->getYield ()* mat_);

}

void update (){

// something has changed , recalculate yield

df_=exp(-y_ ->getYield ()* mat_);

notifyObservers ();

}

Real getDiscount () const{

return df_;

}

};

Dimitri Reiswich QuantLib Intro I December 2010 60 / 88

We will test the code by setting up a yield and discount factor class and changing the yield
with the setYield(...) function.

void testingDesignPatterns2 (){

boost::shared_ptr <SimpleYield > myYield(new SimpleYield (0.03));

Time mat =1.0;

SimpleDiscountFactor myDf(myYield , mat);

std::cout << "Discount before update:" << myDf.getDiscount () << std::endl;

myYield ->setYield (0.01);

std::cout << "Discount after update:" << myDf.getDiscount () << std::endl;

}

The output of this function is

Discount before update:0.970446

Discount after update:0.99005

As the result shows, the discount factor instance returns an updated factor without changing
anything in the instance directly.

Dimitri Reiswich QuantLib Intro I December 2010 61 / 88

We will take a further step in the previous example and illustrate how the discount factor
class can be observed by other classes (remember that it has been derived from the
Observable class too). We will define a discounted cash flow class SimpleDiscountedCF, which
discounts any cash flow given a discount factor. This class needs an updated discount factor.
Changing the yield in the original yield class should trigger the following procedures

Update the discount factor class, since yield has changed. Notify the observer of the
discount factor class (the SimpleDiscountedCF class in this case).

Update the discounted cash flow class, since the discount factor has changed.

The example class is shown below

class SimpleDiscountedCF:public Observer{

private:

boost::shared_ptr <SimpleDiscountFactor > df_;

Real discountedUnit_;

public:

SimpleDiscountedCF(const boost::shared_ptr <SimpleDiscountFactor >& df):df_(df){

discountedUnit_=df_ ->getDiscount ();

registerWith(df_);

}

void update (){

// something has changed , recalculate discount factor

discountedUnit_=df_ ->getDiscount ();

}

Real discountCashFlow(const Real& amount) const{

return discountedUnit_*amount;

}

};

Dimitri Reiswich QuantLib Intro I December 2010 62 / 88

The functionality is tested with a function which will discount a cash flow of 100.0. We will
test the discounted cash flow before and after updating the initialized single yield.

void testingDesignPatterns3 (){

boost::shared_ptr <SimpleYield > myYield(new SimpleYield (0.03));

Time mat =1.0;

// construct observer of yield curve

boost::shared_ptr <SimpleDiscountFactor > myDf(

new SimpleDiscountFactor(myYield , mat));

// construct observer of discount factor

SimpleDiscountedCF myCf(myDf);

std::cout << "Cash Flow before update:" << myCf.discountCashFlow (100.0) << std::endl;

myYield ->setYield (0.01);

std::cout << "Cash Flow after update:" << myCf.discountCashFlow (100.0) << std::endl;

}

The corresponding output is

Cash Flow before update:97.0446

Cash Flow after update:99.005

Dimitri Reiswich QuantLib Intro I December 2010 63 / 88

Before proceeding to the next topic, we will introduce an interesting Observable which is the
evaluationDate() in the global Settings class. Recalling, that the date can be called by

Settings::instance().evaluationDate()

it is possible to register with the evaluation date via

registerWith(Settings::instance().evaluationDate())

The corresponding Observer will be notified any time the evaluation date changes, which
makes it possible to enforce a revaluation of all instruments by changing the global
evaluation date. This is obviously something that is needed for all financial instruments
which have a time to maturity.

Dimitri Reiswich QuantLib Intro I December 2010 64 / 88

To demonstrate the functionality, we will rewrite the previously discussed
SimpleDiscountFactor class to a class which accepts a maturity date and day counter, instead
of a time to maturity. This class will be called SimpleDiscountFactor1 class. The valuation
date will be the global one, which we will register as an Observable. The SimpleDiscountFactor1

class will be notified in case the global evaluation date changes, which will trigger the
update() function. This function will then recalculate the discount factor based on the new
evaluation date (and time to maturity). The class code is shown below

class SimpleDiscountFactor1: public Observable , Observer{

private:

DiscountFactor df_;

Date evalDate_ ,matDate_;

boost::shared_ptr <SimpleYield > y_;

DayCounter dc_;

public:

SimpleDiscountFactor1(const boost::shared_ptr <SimpleYield >& y,

const Date& matDate , const DayCounter& dc)

:y_(y),matDate_(matDate),dc_(dc){

// register yield as an observable!

evalDate_=Settings :: instance (). evaluationDate ();

registerWith(y_);

registerWith(Settings :: instance (). evaluationDate ());

df_=exp(-y_ ->getYield ()*dc_.yearFraction(evalDate_ ,matDate_));

}

void update (){

// something has changed , recalculate discount factor

evalDate_=Settings :: instance (). evaluationDate ();

df_=exp(-y_ ->getYield ()*dc_.yearFraction(evalDate_ ,matDate_));

notifyObservers ();

}

Real getDiscount () const{

return df_;

}

};

Dimitri Reiswich QuantLib Intro I December 2010 65 / 88

To test the registration, we will change the yield and afterwards the global evaluation date
and print out the corresponding result. This is summarized in the following function

void testingDesignPatterns2a (){

boost::shared_ptr <SimpleYield > myYield(new SimpleYield (0.03));

Date mat=Date:: todaysDate ()+12* Months;

DayCounter dc=ActualActual ();

SimpleDiscountFactor1 myDf(myYield , mat ,dc);

std::cout << "Discount before yield update:" << myDf.getDiscount () << std::endl;

myYield ->setYield (0.01);

std::cout << "Discount after yield update:" << myDf.getDiscount () << std::endl;

Settings :: instance (). evaluationDate ()=mat -1* Months;

std::cout << "Discount after evaluation date update:" << myDf.getDiscount () << std::endl;

}

The output of the function is

Discount before yield update:0.970446

Discount after yield update:0.99005

Discount after evaluation date update:0.999151

Dimitri Reiswich QuantLib Intro I December 2010 66 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 67 / 88

The Observer, Observable patterns are very convenient to keep track of some market quotes,
such as a volatility quote, a yield or a forward rate. QuantLib provides a base class called
Quote from which one can derive any customized quote. The class implements two pure
virtual functions called

Real value() const

bool isValid()

which return either the value or a boolean indicating whether the quote is valid. The Quote

class is by default an Observable. A class that derives from the Quote class is SimpleQuote, which
accepts a Real number in the constructor. In addition to the Quote functions, it implements a

Real setValue(Real value) function, which sets the new value, notifies all observers and
returns the difference to the old value.

void reset() function which resets the quote changing it to an isValid()=false state.

Other classes derived from Quote are available, such as

LastFixingQuote

ImpliedStdDevQuote

ForwardValueQuote

ForwardSwapQuote

EurodollarFuturesImpliedStdDevQuote

FuturesConvAdjustmentQuote

All quotes implement some market specific properties and are an Observer as well as an
Obserable.

Dimitri Reiswich QuantLib Intro I December 2010 68 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 69 / 88

This section discusses the LazyObject class which implements the lazy object design pattern.
As the name suggests, the class is designed to be lazy with respect to any calculations. The
classical case is the following: recall the observer/observable case where the Observable

triggers the update() function of the Observer. This is a nice feature. However, the same
feature can lead to unnecessary calculations. Imagine a volatility smile class which accepts 10
volatilities for some given strikes. Each volatility is an Observable, as is the whole volatility
smile class. Now imagine what happens in case of a parallel shift of the smile:

the first strike volatility changes, notifies the smile which again notifies its observers,
which do some recalculations in the update() function.

the second volatility changes, notifies the smile, the smile notifies its observers which do
again some recalculations.

...

At the end we would have 10 recalculations, although we are actually interested in one
recalculation after all volatilities are updated. One example is a recalibration of a model
fitted to market quotes. Such a recalibration can be numerically very intensive and the goal
should be one recalibration after all quotes are up to date and not a recalibration after each
single volatility movement.

Dimitri Reiswich QuantLib Intro I December 2010 70 / 88

The LazyObject implements a design pattern which allows us to conveniently adjust for such a
case. The class inherits from both, the Observer and Observable class. However, the user can
not modify the update() function. This function is implemented by default and the only thing
that it does is setting a bool calculated_ to false and notifying all Observers. You can even
avoid the notification of the Observers by using the freeze() function. This effect can be
reverted by the unfreeze() function.

The class has one protected pure virtual function which needs to be implemented, called
void performCalculations(). This function needs to be implemented once in each derived class.
It is not designed to be called directly in any of the other functions of this class. The main
function which should be used for the updating mechanism in the derived class is the virtual

void calculate() function which is protected. The function does the following

If the class is not frozen and the calculated_ flag is set to false, it tries to call
void performCalculations() and sets calculated_ to true. Otherwise it doesn’t do anything.

The void calculate() is the function which should be called in other member functions before
returning any value. If all stored calculations are up to date, the calling of calculate()

doesn’t have any effect, except from testing a simple if condition. Otherwise, it will call
performCalculations() once and proceed with the updated calculated values.

Dimitri Reiswich QuantLib Intro I December 2010 71 / 88

We will demonstrate the LazyObject pattern for a SABR model calibration. The interpolation
toolbox of QuantLib provides a SABRInterpolation. This model has been introduced in Hagan et
al. 2002. It’s name is due to the α, β, ρ coefficients used in the following SDE system

dFt = α̂tF
β
t dW

1
t F0 = f (1)

dα̂t = να̂tdW
2
t . α̂0 = α. (2)

Here, Ft is the stochastic process describing the evolution of the forward of an underlying
asset and α̂t is a stochastic scaling parameter. The Wiener processes W 1

t ,W
2
t are correlated

via dW 1
t dW

2
t = ρdt. Hagan et al. derive an approximative formula for the implied

Black-Scholes volatility, which is implied by the model. This function depends on the
parameters α, β, ρ, ν and is given as

σSABR(K,α, β, ρ, ν) =
α

(fK)0.5(1−β)
[
1 +

(1−β)2

24
ln2 f

K
+

(1−β)4

1920
ln4 f

K

](z

χ(z)

)

×
[
1 +

((1− β)2

24

α2

(fK)1−β
+

1

4

ρβνα

(fK)0.5(1−β)
+

2− 3ρ2

24
ν2
)
τ
]

with

z =
ν

α
(fK)0.5(1−β) ln

f

K

and

χ(z) = ln
(√1− 2ρz + z2 + z − ρ

1− ρ

)
.

Dimitri Reiswich QuantLib Intro I December 2010 72 / 88

Given a market strike-volatility function, the objective in the calibration is to find
parameters α, β, ρ, ν which fit the market smile. This requires a calibration, a
multidimensional optimization algorithm with an appropriate cost function. This is
incorporated in the constructor of the interpolation

SABRInterpolation(const I1& xBegin , // x = strikes

const I1& xEnd ,

const I2& yBegin , // y = volatilities

Time t, // option expiry

const Real& forward ,

Real alpha ,

Real beta ,

Real nu,

Real rho ,

bool alphaIsFixed ,

bool betaIsFixed ,

bool nuIsFixed ,

bool rhoIsFixed ,

bool vegaWeighted = false ,

const boost::shared_ptr <EndCriteria >& endCriteria

= boost:: shared_ptr <EndCriteria >(),

const boost::shared_ptr <OptimizationMethod >& optMethod

= boost:: shared_ptr <OptimizationMethod >())

The interpolation constructor allows to decide whether some of the parameters should be
kept fix (a popular choice is β = 0.7 or β = 1.0).

Dimitri Reiswich QuantLib Intro I December 2010 73 / 88

Imagine that we have a LazyObject SabrModel class which observes an instance of a SimpleSmile

class and does not have any observers. The SimpleSmile class is constructed as an Observer of
several volatility vs. strike quotes. We are interested in the procedures which are called after
SimpleSmile is updated by any of the volatility quotes. If this happens, the SimpleSmile class
triggers the update() function of SabrModel, which doesn’t trigger any
calculations(notifyObservers() will have no effect). The only thing that update() does is
setting the calculated_ flag to false. Since the SabrModel class has a recalibration procedure,
we will put it into the void performCalculations() function.

Another function that SabrModel will have is a

getVanillaPrice(const Real& strike)

function. Clearly, we want this function to return the vanilla option price based on a
calibrated parameter set. To do this, we will call calculate() at the beginning of the function.
If no calculations are necessary (calculated_ is set to true) performCalculations() will not be
called and no recalibration is performed. Otherwise, a recalibration is invoked first before
proceeding to the vanilla price calculation. The concepts will be presented in some simple
classes.

Dimitri Reiswich QuantLib Intro I December 2010 74 / 88

The SimpleVolQuote and SimpleSmile class are presented below

class SimpleVolQuote: public Quote{

private:

Volatility vol_;

Real strike_;

public:

SimpleVolQuote(Volatility vol , Real strike) :vol_(vol),strike_(strike){}

bool isValid () const {return vol_!=Null <Real >();}

Real value() const {return vol_;}

Real strike () const {return strike_ ;}

void setVolatility(const Volatility& vol){

vol_=vol;

notifyObservers ();

}

};

class SimpleSmile: public Observable , Observer{

private:

std::vector <boost ::shared_ptr <SimpleVolQuote >> volVec_;

public:

SimpleSmile(const std::vector <boost:: shared_ptr <SimpleVolQuote >>& volVec)

:volVec_(volVec){

for(Size i=0;i<volVec_.size ();i++){

registerWith(volVec_[i]);

}

}

void update (){

notifyObservers ();

}

std::vector <boost ::shared_ptr <SimpleVolQuote >> getVolVec () const{return volVec_ ;}

Size getVolNumber () const{return volVec_.size ();}

};

Dimitri Reiswich QuantLib Intro I December 2010 75 / 88

We will use the following simple Black-Scholes function for our calculations

#include <boost/math/distributions.hpp >

Real blackScholesPriceFwd(const Real& fwd ,

const Real& strike ,

const Volatility& vol ,

const Rate& rd,

const Rate& rf,

const Time& tau ,

const Integer& phi){

boost::math:: normal_distribution <> d(0.0 ,1.0);

Real dp,dm , stdDev , res , domDf , forDf;

domDf=std::exp(-rd*tau); forDf=std::exp(-rf*tau);

stdDev=vol*std::sqrt(tau);

dp=(std::log(fwd/strike)+0.5* stdDev*stdDev)/ stdDev;

dm=(std::log(fwd/strike)-0.5* stdDev*stdDev)/ stdDev;

res=phi*domDf*(fwd*cdf(d,phi*dp)-strike*cdf(d,phi*dm));

return res;

}

Dimitri Reiswich QuantLib Intro I December 2010 76 / 88

#include " LazyObject1 .h"

#include " LazyObjectBS .h"

class SabrModel: public LazyObject{

public:

SabrModel(const boost::shared_ptr <SimpleSmile >& smile ,

const Real& fwd , const Time& tau , const Real& rd ,const Real& rf)

:smile_(smile),fwd_(fwd),tau_(tau),rd_(rd),rf_(rf),

strikeVec_ (std::vector <Real >(smile ->getVolNumber ())),

volVec_ (std::vector <Real >(smile ->getVolNumber ())){

// register smile as observable

registerWith(smile_);

}

Real getVanillaPrice(const Real& strike){

calculate ();

return blackScholesPriceFwd(fwd_ ,strike ,(* intp_)(strike),rd_ ,rf_ ,tau_ ,1);

}

private:

void performCalculations () const{

volQuoteVec_=smile_ ->getVolVec ();

for(Size i=0;i< volQuoteVec_.size ();++i){

strikeVec_[i]=(* volQuoteVec_[i]). strike ();

volVec_[i]=(* volQuoteVec_[i]). value ();

}

if(intp_ ==NULL){

intp_.reset(new SABRInterpolation(strikeVec_.begin(), strikeVec_.end(),

volVec_.begin(),tau_ ,fwd_ ,0.1 ,0.1 ,0.1 ,0.1 ,false , false , false , false));

}

intp_ ->update (); std::cout << " Recalibration Performed!" << std::endl;

}

Real fwd_ ,rd_ ,rf_;

Time tau_;

boost::shared_ptr <SimpleSmile > smile_;

mutable boost::shared_ptr <SABRInterpolation > intp_;

mutable std::vector <Real > strikeVec_ ,volVec_;

mutable std::vector <boost :: shared_ptr <SimpleVolQuote >> volQuoteVec_;

};
Dimitri Reiswich QuantLib Intro I December 2010 77 / 88

The constructor does not perform any initial calibration, this is totally handled by the
calculate() function. Before returning the price, the getVanillaPrice function calls the
calculate() function which calls performCalculations() only if necessary. The
performCalculations() function initializes the interpolation, if necessary, and updates the
volatilities and strike vectors by performing a recalibration. This is the numerically intensive
function. We have incorporated a print out of

"Recalibration Performed !"

in case the recalibration is called. This will be needed for the following test setup. We will
construct 4 strike volatility quotes which will be used to construct an instance of SimpleSmile.
Using this instance, an instance of the SabrModel class will be constructed. In addition, the
following will be performed:

Calculate 4 vanilla prices with strikes 90, 95, 100, 105

Shift all volatilities by 2%

Calculate a vanilla price with strike 100.0

This setup reflects a typical market scenario. We expect the recalibration to be called 2
times: at the beginning and at the end after all volatilities are updated. In particular, we do
not want a recalibration at the beginning when the last 3 vanillas are calculated, or in
between when volatilities change. The code follows.

Dimitri Reiswich QuantLib Intro I December 2010 78 / 88

#include " LazyObject2 .h"

void testingLazyObject1 (){

boost::shared_ptr <SimpleVolQuote > v1(new SimpleVolQuote (0.20 , 90.0));

boost::shared_ptr <SimpleVolQuote > v2(new SimpleVolQuote (0.194 ,95.0));

boost::shared_ptr <SimpleVolQuote > v3(new SimpleVolQuote (0.187 ,100.0));

boost::shared_ptr <SimpleVolQuote > v4(new SimpleVolQuote (0.191 ,105.0));

std::vector <boost ::shared_ptr <SimpleVolQuote >> volVec;

volVec.push_back(v1); volVec.push_back(v2);

volVec.push_back(v3); volVec.push_back(v4);

boost::shared_ptr <SimpleSmile > mySmile(new SimpleSmile(volVec));

Time tau =0.5; Real spot =100.0 , rd=0.03, rf =0.024;

Real fwd=spot*std::exp((rd-rf)*tau);

SabrModel myModel(mySmile , fwd , tau , rd, rf);

Real res=myModel.getVanillaPrice (100.0);

std::cout << "Initial Sabr ATM Vanilla Price:" << res << std::endl;

res=myModel.getVanillaPrice (90.0);

res=myModel.getVanillaPrice (95.0);

res=myModel.getVanillaPrice (105.0);

v1 ->setVolatility (0.22);

v2 ->setVolatility (0.214);

v3 ->setVolatility (0.207);

v4 ->setVolatility (0.211);

res=myModel.getVanillaPrice (100.0);

std::cout << "Last Sabr ATM Vanilla Price:" << res << std::endl;

}

Dimitri Reiswich QuantLib Intro I December 2010 79 / 88

The output of this function is

Recalibration Performed!

Initial Sabr ATM Vanilla Price:5.39896

Recalibration Performed!

Last Sabr ATM Vanilla Price:5.9546

which is exactly the behavior that we wanted.

Dimitri Reiswich QuantLib Intro I December 2010 80 / 88

1 Useful Macros

2 Variable Types
Exercise

3 Date, Calendar Classes and Day Counters
Date
Calendars
Day Counters
Schedule
Exercise

4 Design Patterns
Factory
Singleton
Exercise
Observer, Observables
Quotes
Lazy Object
Handles

Dimitri Reiswich QuantLib Intro I December 2010 81 / 88

The following section discusses QuantLib’s Handle concept. Since this is one of the most
important concepts which is used intensely in the library, we will spend some time on its
discussion.

In the previous example we have discussed the effects of a parallel smile shift on dependent
classes of type Observer. To shift the smile we had to invoke the setVolatility(...) function
on each of the single volatility quotes which were observed by the SimpleSmile class, which in
turn updated all of its observers. This can become tedious if say 20 volatilities change, and
you have to invoke setVolatility(...) for each of them. Also, it might make sense to redesign
the SimpleSmile class to store the volatilities and vectors as simple std::vector<Real> objects.
The updating procedure would incorporate a reconstruction of a new smile with new
volatility/strike vectors. This would require some updating mechanism for the observers
since it would not be helpful to reconstruct all classes that depend on SimpleSmile, for
example 100 different pricers. The alternative would be a setSmile(...) function in each of
the pricers, but this is not very convenient. Also, it is not very safe as one might forget to set
the smile for some pricer which would then return a non market consistent price. Some
automatic updating mechanism is clearly required. The consequence is to think about an
appropriate concept for such a case.

Dimitri Reiswich QuantLib Intro I December 2010 82 / 88

To achieve this, QuantLib provides a Handle<T> class template, where T is an Observable.
Incorporating the concept requires at least 2 functionalities: relinking and updating. The
relinking functionality is implemented in the class RelinkableHandle<T>, which derives from
Handle<T>. Relinking replaces the old referenced object with a new one (e.g a new smile
object). The updating is incorporated in Handle<T> (and consequently in RelinkableHandle<T>).
It notifies all observers that there is a new object. To summarize:

a RelinkableHandle<T> class is provided, which derives from Handle<T>. This class has a
public linkTo(const boost::shared_ptr<T>& h) function which implements the relinking to
a new observable.

if T is updated or relinked, Handle<T> propagates the notifyObservers() to its own
observers. Handle<T> can be registered as an Observable.

You might ask, why RelinkableHandle<T> is needed and if the same functionality couldn’t have
been employed by the base class Handle<T>. Assume for the moment this would possible and
we would have a DiscountingBondEngine(Handle<YieldTermStructure> curve) constructor.
Assume that the curve object is passed to several other classes too. If Handle<T> would
provide the linkTo(...) functionality, the DiscountingBondEngine would be able to relink the
yield curve such that the object curve is now some different yield curve. This would affect all
other classes which hold a copy of curve. Obviously, these classes would be able to change the
curve too, resulting in a non-manageable architecture.

Dimitri Reiswich QuantLib Intro I December 2010 83 / 88

Browsing through the code will show you that many constructors are of type

DiscountingBondEngine(Handle<YieldTermStructure> curve,...)

to give an example. Deriving RelinkableHandle<T> from Handle<T> allows to create a relinkable
object, for example

boost::shared_ptr<YieldTermStructure> ptrCurve(new YieldTermStructure(...));

RelinkableHandle<YieldTermStructure> myHandle(ptrCurve);

and construct the original object with

DiscountingBondEngine myEngine(myHandle,...);

This is valid, since RelinkableHandle derives from Handle. However, the constructed object
myEngine cannot relink the object within the class. This relinking is done with

boost::shared_ptr<YieldTermStructure> ptrCurveNew(new YieldTermStructure(...));

myHandle.linkTo(ptrCurveNew);

The DiscountingBondEngine instance myEngine will then refer to the new yield term structure,
provided it has been registered with myHandle before.

Dimitri Reiswich QuantLib Intro I December 2010 84 / 88

Before proceeding, we will rewrite the previously discusses SimpleDiscountFactor class with the
Handle architecture. The class is called SimpleDiscountFactor2, the code is shown below

class SimpleDiscountFactor2: public Observable , Observer{

private:

DiscountFactor df_;

Time mat_;

Handle <SimpleYield > y_;

public:

SimpleDiscountFactor2(const Handle <SimpleYield >& y,

Time& mat):y_(y),mat_(mat){

// register yield as an observable!

registerWith(y_);

df_=exp(-(*y_)->getYield ()* mat_);

}

void update (){

// something has changed , recalculate yield

df_=exp(-(*y_)->getYield ()* mat_);

notifyObservers ();

}

Real getDiscount () const{

return df_;

}

};

This is almost the same architecture as before, but this time, we pass a Handle<SimpleYield>

to the constructor.

Dimitri Reiswich QuantLib Intro I December 2010 85 / 88

To test the functionality, we will set up a similar scenario as for the original discount factor
class. We will change the yield by calling the setYield() function first, to test the first update
mechanism. We will then relink the original Handle to a new one and ask again for the
discount factor. This tests the second update mechanism. The function is shown below

#include <boost/assign.hpp >

using namespace boost :: assign; // bring ’operator +=()’ into scope

void testHandle1 (){

boost::shared_ptr <SimpleYield > yield(new SimpleYield (0.04));

RelinkableHandle <SimpleYield > yieldHandle(yield);

Time mat =10.0;

SimpleDiscountFactor2 myDf(yieldHandle ,mat);

std::cout << "Initial Discount:" << myDf.getDiscount () << std::endl;

yield ->setYield (0.06);

std::cout << "Discount after yield update:" << myDf.getDiscount () << std::endl;

boost:: shared_ptr <SimpleYield > yieldNew(new SimpleYield (0.01));

yieldHandle.linkTo(yieldNew);

std::cout << "Discount after relinking :" << myDf.getDiscount () << std::endl;

}

Dimitri Reiswich QuantLib Intro I December 2010 86 / 88

The output of the function is

Initial Discount:0.67032

Discount after yield update:0.548812

Discount after relinking:0.904837

In the implementation of SimpleDiscountFactor2, it is shown how to dereference a Handle

object. At the end we are interested in calling the getYield() function. Looking at the Handle

concept more closly shows that the class represents a pointer to a pointer. The pointer
pointing to the observed class can be retrieved with

const boost::shared_ptr<T>& currentLink() const;

const boost::shared_ptr<T>& operator->() const;

const boost::shared_ptr<T>& operator*() const;

This dereference procedures allow us to dereference a handle with *myHandle or myHandle->,
which returns a pointer to the observed object. This pointer has to be dereferenced again to
access the basic functions of the observed object.

Dimitri Reiswich QuantLib Intro I December 2010 87 / 88

Thank you!

Dimitri Reiswich QuantLib Intro I December 2010 88 / 88

	Useful Macros
	Variable Types
	Exercise

	Date, Calendar Classes and Day Counters
	Date
	Calendars
	Day Counters
	Schedule
	Exercise

	Design Patterns
	Factory
	Singleton
	Exercise
	Observer, Observables
	Quotes
	Lazy Object
	Handles

